cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A365814 Decimal expansion of the largest root of the polynomial x^3 - 2*x^2 - 2*x + 2.

Original entry on oeis.org

2, 4, 8, 1, 1, 9, 4, 3, 0, 4, 0, 9, 2, 0, 1, 5, 6, 2, 2, 6, 3, 3, 5, 3, 7, 2, 4, 1, 2, 1, 6, 8, 5, 7, 1, 8, 0, 5, 5, 2, 7, 4, 5, 2, 1, 6, 9, 9, 8, 4, 7, 6, 7, 2, 8, 3, 9, 5, 8, 9, 3, 1, 4, 0, 8, 1, 3, 8, 3, 6, 9, 2, 2, 3, 8, 6, 7, 6, 5, 0, 5, 3, 0, 1, 3, 2, 9, 1
Offset: 1

Views

Author

Stefano Spezia, Sep 19 2023

Keywords

Comments

It is the spectral radius of the house graph.

Examples

			2.4811943040920156226335372412168571805527452...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    fsolve(x^3-2*x^2-2*x+2)[3];  # Alois P. Heinz, Sep 19 2023
  • Mathematica
    First[RealDigits[Root[#^3-2#^2-2#+2,3,0],10,88]]

Formula

Equals (2 + 10/(3*i*sqrt(111) - 1)^(1/3) + (3*i*sqrt(111) - 1)^(1/3))/3, where i denotes the imaginary unit.

A380895 Decimal expansion of (sqrt(17) + 1)/(4*sqrt(17)).

Original entry on oeis.org

3, 1, 0, 6, 3, 3, 9, 0, 6, 2, 5, 9, 0, 8, 3, 2, 4, 3, 3, 7, 9, 7, 2, 6, 6, 1, 5, 5, 2, 9, 0, 3, 0, 5, 4, 4, 4, 8, 7, 4, 5, 8, 8, 1, 2, 1, 3, 7, 8, 4, 7, 3, 5, 9, 3, 2, 9, 3, 9, 1, 6, 7, 0, 1, 9, 2, 5, 7, 2, 8, 5, 8, 0, 3, 4, 3, 7, 6, 7, 8, 8, 1, 4, 0, 9, 9, 7, 9, 9, 4, 8, 6, 4, 8, 6, 3, 0, 0, 4, 3
Offset: 0

Views

Author

Stefano Spezia, Feb 07 2025

Keywords

Comments

This constant and A380896 give the stationary distribution for maximal entropy random walk on the barred-square graph (see Burda et al.).

Examples

			0.310633906259083243379726615529030544487458812...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[17]+1)/(4Sqrt[17]),10,100][[1]]
  • PARI
    1/4+1/sqrt(272) \\ Charles R Greathouse IV, Feb 08 2025

Formula

Equals 1/2 - A380896.
Minimal polynomial: 34*x^2 - 17*x + 2. - Stefano Spezia, Aug 03 2025

A380896 Decimal expansion of (sqrt(17) - 1)/(4*sqrt(17)).

Original entry on oeis.org

1, 8, 9, 3, 6, 6, 0, 9, 3, 7, 4, 0, 9, 1, 6, 7, 5, 6, 6, 2, 0, 2, 7, 3, 3, 8, 4, 4, 7, 0, 9, 6, 9, 4, 5, 5, 5, 1, 2, 5, 4, 1, 1, 8, 7, 8, 6, 2, 1, 5, 2, 6, 4, 0, 6, 7, 0, 6, 0, 8, 3, 2, 9, 8, 0, 7, 4, 2, 7, 1, 4, 1, 9, 6, 5, 6, 2, 3, 2, 1, 1, 8, 5, 9, 0, 0, 2, 0, 0, 5, 1, 3, 5, 1, 3, 6, 9, 9, 5, 6
Offset: 0

Views

Author

Stefano Spezia, Feb 07 2025

Keywords

Comments

A380895 and this constant give the stationary distribution for maximal entropy random walk on the barred-square graph (see Burda et al.).

Examples

			0.18936609374091675662027338447096945551254118786...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[17]-1)/(4Sqrt[17]),10,100][[1]]
  • PARI
    1/4-1/sqrt(272) \\ Charles R Greathouse IV, Feb 08 2025

Formula

Equals 1/2 - A380895.
Minimal polynomial: 34*x^2 - 17*x + 2. - Stefano Spezia, Aug 03 2025

A320029 Decimal expansion of sqrt(9 + sqrt(9 + sqrt(9 + sqrt(9 + ...)))) = (sqrt(37) + 1)/2.

Original entry on oeis.org

3, 5, 4, 1, 3, 8, 1, 2, 6, 5, 1, 4, 9, 1, 0, 9, 8, 4, 4, 4, 9, 9, 8, 4, 2, 1, 2, 2, 6, 0, 1, 0, 3, 3, 5, 3, 1, 0, 4, 2, 4, 8, 5, 0, 4, 7, 3, 9, 3, 2, 0, 5, 5, 9, 3, 2, 0, 9, 5, 7, 6, 5, 2, 3, 2, 4, 3, 1, 6, 6, 3, 6, 2, 6, 5, 9, 4, 5, 5, 1, 1, 9, 9, 0, 1, 5, 3, 3, 2, 1, 3, 9, 7, 8, 9, 2, 4, 3, 3, 1, 7, 1, 5, 4, 6
Offset: 1

Views

Author

Robert G. Wilson v, Oct 03 2018

Keywords

Comments

For x >= 0, sqrt(x + sqrt(x + sqrt(x + sqrt(x + ...)))) = (sqrt(4*x+1) + 1)/2. This is an integer for each x such that 2*x is a term in A000217.

Examples

			3.541381265149109844499842122601033531042485047393205593209576523243166362659...
		

Crossrefs

Programs

  • Maple
    evalf((sqrt(37)+1)/2,120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    RealDigits[ Fold[ Sqrt[#1 + #2] &, 0, Table[9, {135}]], 10, 111][[1]] (* or *)
    RealDigits[(Sqrt[37] + 1)/2, 10, 111][[1]]
  • PARI
    (sqrt(37)+1)/2 \\ Altug Alkan, Oct 03 2018

Formula

Minimal polynomial: x^2 - x - 9. - Stefano Spezia, Jul 02 2025

A358945 Decimal expansion of the positive root of 4*x^2 + x - 1.

Original entry on oeis.org

3, 9, 0, 3, 8, 8, 2, 0, 3, 2, 0, 2, 2, 0, 7, 5, 6, 8, 7, 2, 7, 6, 7, 6, 2, 3, 1, 9, 9, 6, 7, 5, 9, 6, 2, 8, 1, 4, 3, 3, 9, 9, 9, 0, 3, 1, 7, 1, 7, 0, 2, 5, 5, 4, 2, 9, 9, 8, 2, 9, 1, 9, 6, 6, 3, 6, 8, 6, 9, 2, 9, 3, 2, 9, 2, 2
Offset: 0

Views

Author

Wolfdieter Lang, Jan 20 2023

Keywords

Comments

The negative root is -(A189038 - 1) = -0.6403882032... .
c^n = A052923(-n) + A006131(-(n+1))*phi17, for n >= 0, with phi17 = A222132 = (1 + sqrt(17))/2, A052923(-n) = -(-2*i)^(-n)*S(-(n+2), i/2) = (i/2)^n*S(n, i/2), with i = sqrt(-1), and A006131(-(n+1)) = A052923(-n+1)/4 = -(i/2)^(n+1)*S(n-1, i/2), with the S-Chebyshev polynomials (see A049310), and S(-n, x) = -S(n-2, x), for n >= 1. - Wolfdieter Lang, Jan 04 2024

Examples

			c = 0.39038820320220756872767623199675962814339990317170255429982919663...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[17] - 1)/8, 10, 120][[1]] (* Amiram Eldar, Jan 20 2023 *)
    RealDigits[Root[4x^2+x-1,2],10,120][[1]] (* Harvey P. Dale, Jan 15 2024 *)

Formula

c = (-1 + sqrt(17))/8 = A189038 - 5/4 = A174930 - 5/8.
c = 1/phi17 = (-1 + phi17)/4, with phi17 = A222132. - Wolfdieter Lang, Jan 05 2024

A380897 Decimal expansion of (108)^(1/5).

Original entry on oeis.org

2, 5, 5, 0, 8, 4, 9, 0, 0, 1, 2, 5, 1, 5, 8, 1, 6, 6, 5, 7, 3, 3, 0, 9, 5, 7, 0, 0, 3, 8, 5, 9, 9, 8, 5, 4, 6, 5, 8, 9, 8, 0, 0, 1, 6, 7, 3, 8, 3, 9, 6, 4, 5, 4, 7, 3, 7, 8, 0, 1, 9, 6, 3, 6, 2, 1, 1, 4, 3, 4, 4, 6, 8, 6, 0, 6, 9, 4, 7, 1, 3, 1, 1, 0, 3, 5, 1, 4, 8, 7, 3, 0, 7, 9, 5, 8, 6, 4, 4, 0
Offset: 1

Views

Author

Stefano Spezia, Feb 07 2025

Keywords

Comments

The effective degree of generic random walk on the barred-square graph (see Burda et al.).

Examples

			2.550849001251581665733095700385998546589800167...
		

Crossrefs

Cf. A222132.

Programs

  • Mathematica
    RealDigits[(108)^(1/5),10,100][[1]]
Previous Showing 11-16 of 16 results.