cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A273667 Permutation of nonnegative integers: a(0) = 0, a(A153880(n)) = A255411(a(n)), a(A273670(n)) = A256450(a(n)).

Original entry on oeis.org

0, 1, 4, 2, 6, 3, 18, 8, 12, 5, 24, 10, 48, 15, 16, 7, 30, 13, 56, 20, 21, 9, 36, 17, 96, 67, 60, 26, 27, 11, 72, 42, 22, 23, 120, 81, 240, 73, 66, 32, 33, 14, 87, 49, 28, 29, 144, 101, 360, 270, 88, 89, 80, 38, 90, 39, 52, 19, 107, 57, 288, 34, 76, 35, 168, 125, 416, 303, 109, 110, 99, 44, 420, 111, 108, 45, 61, 25, 112, 131, 64, 68, 327, 40
Offset: 0

Views

Author

Antti Karttunen, May 30 2016

Keywords

Crossrefs

Inverse: A273668.
Similar or related permutations: A255566, A273665.

Formula

a(0) = 0; for n >= 1: if A257680(A225901(n)) = 0 [when n is one of the terms of A153880] then a(n) = A255411(a(A266193(n))), otherwise [when n is one of the terms of A273670], a(n) = A256450(a(A273663(n))).
As a composition of other permutations:
a(n) = A255566(A273665(n)).

A275806 a(n) = number of distinct nonzero digits in factorial base representation of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 4, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2016

Keywords

Examples

			For n=0, with factorial base representation (A007623) also 0, there are no nonzero digits, thus a(0) = 0.
For n=2, with factorial base representation "10", there is one distinct nonzero digit, thus a(2) = 1.
For n=3, with factorial base representation "11", there is just one distinct nonzero digit, thus a(3) = 1.
For n=44, with factorial base representation "1310", there are two distinct nonzero digits ("1" and "3"), thus a(44) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Length[Union[Select[s, # > 0 &]]]]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
  • Python
    from sympy import prime, primefactors
    from operator import mul
    import collections
    def a007623(n, p=2): return n if n
  • Scheme
    (define (A275806 n) (A001221 (A275735 n)))
    

Formula

a(n) = A001221(A275735(n)).
a(n) = A060502(A225901(n)).
Other identities. For all n >= 0:
a(n) = a(A153880(n)) = a(A255411(n)). [The shift-operations do not change the number of distinct nonzero digits.]
a(A265349(n)) = A060130(A265349(n)).
a(A000142(n)) = 1.
a(A033312(n)) = n-1, for all n >= 1.

A264990 a(n) = number of occurrences of a most frequent nonzero digit in factorial base representation (A007623) of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Dec 22 2015

Keywords

Examples

			   n  A007623(n)   a(n) [highest number of times any nonzero digit occurs].
   0 =   0           0 (because no nonzero digits present)
   1 =   1           1
   2 =  10           1
   3 =  11           2
   4 =  20           1
   5 =  21           1
   6 = 100           1
   7 = 101           2
   8 = 110           2
   9 = 111           3
  10 = 120           1
  11 = 121           2
  12 = 200           1
  13 = 201           1
  14 = 210           1
  15 = 211           2
  16 = 220           2
  17 = 221           2
  18 = 300           1
and for n=63 we have:
  63 = 2211          2.
		

Crossrefs

Cf. A265349 (positions of terms <= 1), A265350 (positions of term > 1).
Cf. also A266117, A266118.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Max[Tally[Select[s, # > 0 &]][[;;,2]]]]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Jan 24 2024 *)
  • Python
    from sympy import prime, factorint
    from operator import mul
    import collections
    def a007623(n, p=2): return n if n

Formula

a(0) = 0; for n >= 1, a(n) = max(A257511(n), a(A257684(n))).
Other identities. For all n >= 0:
From Antti Karttunen, Aug 15 2016: (Start)
a(n) = A275811(A225901(n)).
a(n) = A051903(A275735(n)).
(End)

Extensions

Name changed by Antti Karttunen, Aug 15 2016

A275847 Permutation of natural numbers: a(0) = 0, a(A153880(n)) = A255411(a(n)), a(A273670(n)) = A256450(n).

Original entry on oeis.org

0, 1, 4, 2, 3, 5, 18, 6, 12, 7, 8, 9, 16, 10, 22, 11, 13, 14, 15, 17, 19, 20, 21, 23, 96, 24, 48, 25, 26, 27, 72, 28, 52, 29, 30, 31, 60, 32, 64, 33, 34, 35, 36, 37, 38, 39, 40, 41, 90, 42, 66, 43, 44, 45, 114, 46, 70, 47, 49, 50, 76, 51, 84, 53, 54, 55, 56, 57, 58, 59, 61, 62, 88, 63, 94, 65, 67, 68, 100, 69, 108, 71, 73, 74, 112, 75, 118, 77, 78
Offset: 0

Views

Author

Antti Karttunen, Aug 13 2016

Keywords

Crossrefs

Inverse: A275848.
Similar permutations: A273667 (a more recursed variant), A275845, A275846.

Formula

a(0) = 0; for n >= 1: if A257680(A225901(n)) = 0 [when n is one of the terms of A153880] then a(n) = A255411(a(A266193(n))), otherwise [when n is one of the terms of A273670], a(n) = A256450(A273663(n)).

A275946 Number of nonzero digits that are the sole occupants of their slope in factorial base representation: a(n) = A056169(A275734(n)). (See comments for more exact definition.)

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 2, 0, 1, 2, 1, 1, 0, 2, 1, 0, 0, 1, 2, 2, 3, 2, 1, 2, 3, 3, 4, 3, 2, 2, 3, 1, 2, 3, 2, 2, 1, 3, 2, 1, 1, 1, 2, 2, 3, 2, 1, 0, 1, 1, 2, 1, 0, 2, 3, 1, 2, 3, 2, 2, 1, 3, 2, 1, 1, 1, 2, 0, 1, 2, 1, 2, 3, 1, 2, 3, 2, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 2, 1, 3, 2, 1, 1, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 15 2016

Keywords

Comments

Total number of such nonzero digits d_x in the factorial base representation (A007623) of n for which it holds that for all other nonzero digits d_y present (i_x - d_x) <> (i_y - d_y), where i_x and i_y are the indices of the digits d_x and d_y respectively.
Equally: Number of digit slopes occupied by just one nonzero digit in the factorial base representation of n. In other words, a(n) is the number of elements with multiplicity one in multiset [(i_x - d_x) | where d_x ranges over each nonzero digit present and i_x is its position from the right].

Examples

			For n=2, in factorial base "10", there is only one slope occupied by a single nonzero digit (1 is on the sub-maximal slope as 2-1 = 1), thus a(2) = 1.
For n=3, in factorial base "11", there are two occupied slopes, each having just one digit present, thus a(3) = 2.
For n=5, in factorial base "21", there is just one distinct occupied slope, but it contains two nonzero digits (2 and 1 both occupy the maximal slope as 2-2 = 1-1 = 0), thus there are no slopes with just one nonzero digit and a(5) = 0.
For n=525, in factorial base "41311", there are three occupied slopes. The maximal slope contains the nonzero digits "3.1", the sub-maximal digits "4..1.", and the sub-sub-sub-maximal just "1..." (the 1 in the position 4 from right is the sole occupier of its own slope). Thus only one of the slopes is occupied by a lonely occupant and a(525) = 1.
		

Crossrefs

Programs

Formula

a(n) = A056169(A275734(n)).
Other identities. For all n >= 0.
a(n) = A275948(A225901(n)).
A060502(n) = a(n) + A275947(n).
A060130(n) = a(n) + A275962(n).

A275947 Number of distinct slopes with multiple nonzero digits in factorial base representation of n: a(n) = A056170(A275734(n)). (See comments for more exact definition).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 15 2016

Keywords

Comments

a(n) gives the number of distinct elements that have multiplicity > 1 in a multiset [(i_x - d_x) | where d_x ranges over each nonzero digit present and i_x is its position from the right].

Examples

			For n=525, in factorial base "41311", there are three occupied slopes. The maximal slope contains the nonzero digits "3.1", the sub-maximal digits "4..1.", and the sub-sub-sub-maximal just "1..." (the 1 in the position 4 from right is the sole occupier of its own slope). Thus there are two slopes with more than one nonzero digit, and a(525) = 2.
Equally, when we form a multiset of (digit-position - digit-value) differences for all nonzero digits present in "41311", we obtain a multiset [0, 0, 1, 1, 3], in which the distinct elements that occur multiple times are 0 and 1, thus a(525) = 2.
		

Crossrefs

Cf. A275804 (indices of zeros), A275805 (of nonzeros).

Programs

Formula

a(n) = A056170(A275734(n)).
Other identities and observations. For all n >= 0.
a(n) = A275949(A225901(n)).
A060502(n) = A275946(n) + a(n).
a(n) <= A275962(n).

A275962 Total number of nonzero digits that occur on the multiply occupied slopes of the factorial base representation of n: a(n) = A275812(A275734(n)). (See comments for more exact definition).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 3, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 4, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 3, 0, 0, 2, 2, 0, 2, 0, 0, 2, 2, 0, 2, 2, 2, 3, 3, 2, 4, 0, 2, 2, 4, 2, 3, 0, 2, 0, 2, 2, 3, 0, 2, 0, 2, 2, 3, 0, 2, 2, 4, 2, 3, 2, 3, 2, 3, 3, 4, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 15 2016

Keywords

Comments

a(n) gives the total number of elements (counted with multiplicity) that have multiplicity > 1 in a multiset [(i_x - d_x) | where d_x ranges over each nonzero digit present and i_x is its position from the right].

Examples

			For n=525, in factorial base "41311", there are three occupied slopes. The maximal slope contains the nonzero digits "3.1", the sub-maximal the digits "4..1.", and the sub-sub-sub-maximal just "1..." (the 1 in the position 4 from right is the sole occupier of its own slope). There are two slopes with more than one nonzero digit, each having two such digits, and thus a(525) = 2+2 = 4.
Equally, when we form a multiset of (digit-position - digit-value) differences for all nonzero digits present in "41311", we obtain a multiset [0, 0, 1, 1, 3], in which the elements that occur multiple times are [0, 0, 1, 1], thus a(525) = 4.
		

Crossrefs

Cf. A275804 (indices of zeros), A275805 (of nonzeros).

Programs

Formula

a(n) = A275812(A275734(n)).
Other identities and observations. For all n >= 0.
a(n) = A275964(A225901(n)).
a(n) = A060130(n) - A275946(n).
a(n) >= A275947(n).

A275811 Number of nonzero digits on a maximally occupied slope of factorial base representation of n: a(n) = A051903(A275734(n)). See comments for the definition.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 10 2016

Keywords

Comments

Digit slopes are called "maximal", "sub-maximal", "sub-sub-maximal", etc. For digit-positions we employ one-based indexing, thus we say that the least significant digit of factorial base expansion of n is in position 1, etc. The maximal digit slope is occupied when there is at least one digit-position k that contains digit k (maximal digit allowed in that position), so that A260736(n) > 0, and n is thus a term of A273670. The sub-maximal digit slope is occupied when there is at least one nonzero digit k in a digit-position k+1. The sub-sub-maximal slope is occupied when there is at least one nonzero digit k in a digit-position k+2, etc. This sequence gives the number of nonzero digits on a slope (of possibly several) for which there exists no other slopes with more nonzero digits. See the examples.
In other words: a(n) gives the number of occurrences of a most common element in the multiset [(i_x - d_x) | where d_x ranges over each nonzero digit present in factorial base representation of n and i_x is that digit's position from the right].
Involution A225901 maps this metric to another metric A264990 which gives the maximal number of equal nonzero digits occurring in factorial base representation (A007623) of n. See also A060502.

Examples

			For n=23 ("321" in factorial base representation, A007623), all three nonzero digits are maximal for their positions (they all occur on "maximal slope"), thus the "maximal slope" is also the "maximally occupied slope" (as there are no other occupied slopes present), and a(23) = 3.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the "maximal slope", while the most significant 1 is on the "sub-sub-sub-maximal", thus here the "maximal slope" is also the "maximally occupied slope" (with 2 nonzero digits present), and a(29) = 2.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the sub-maximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus there are three occupied slopes in total, all with just one nonzero digit present, and a(37) = 1.
For n=55 ("2101"), the least significant 1 is on the maximal slope, and the digits "21" at the beginning are together on the sub-sub-maximal slope (as they are both two less than the maximal digit values 4 and 3 allowed in those positions), thus here the sub-sub-maximal slope is the "maximally occupied slope" with its two occupiers, and a(55) = 2.
		

Crossrefs

Cf. A275804 (gives the indices of 0 and 1's), A275805 (gives the indices of terms > 1).

Programs

  • Python
    from sympy import prime, factorint
    from operator import mul
    from functools import reduce
    from sympy import factorial as f
    def a051903(n): return 0 if n==1 else max(factorint(n).values())
    def a007623(n, p=2): return n if n

    0 else '0' for i in x])[::-1] return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a275734(n): return 1 if n==0 else a275732(n)*a275734(a257684(n)) def a(n): return 0 if n==0 else a051903(a275734(n)) print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 20 2017

Formula

a(n) = A051903(A275734(n)).
a(n) = A264990(A225901(n)).

Extensions

Signs in comment corrected and clarification added by Antti Karttunen, Aug 16 2016

A275948 Number of nonzero digits that occur only once in factorial base representation of n: a(n) = A056169(A275735(n)).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 0, 2, 1, 1, 2, 2, 1, 0, 1, 1, 2, 2, 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 3, 3, 2, 1, 2, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 3, 2, 2, 3, 3, 2, 1, 2, 0, 1, 1, 0, 1, 2, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 3, 2, 2, 3, 3, 2, 1, 2, 2, 3, 3, 2, 3, 4, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 15 2016

Keywords

Examples

			For n=0, with factorial base representation (A007623) also 0, there are no nonzero digits, thus a(0) = 0.
For n=2, with factorial base representation "10", there is one nonzero digit, thus a(2) = 1.
For n=3 (= "11") there is no nonzero digit which would occur just once, thus a(3) = 0.
For n=23 (= "321") there are three nonzero digits and each of those digits occurs just once, thus a(23) = 3.
For n=44 (= "1310") there are two distinct nonzero digits ("1" and "3"), but only the other (3) occurs just once, thus a(44) = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Count[Tally[Select[s, # > 0 &]][[;;,2]], 1]]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
  • Python
    from sympy import prime, factorint
    from operator import mul
    from functools import reduce
    import collections
    def a056169(n):
        f=factorint(n)
        return 0 if n==1 else sum([1 for i in f if f[i]==1])
    def a007623(n, p=2): return n if n
  • Scheme
    (define (A275948 n) (A056169 (A275735 n)))
    

Formula

a(n) = A056169(A275735(n)).
Other identities. For all n >= 0.
a(n) = A275946(A225901(n)).
A275806(n) = a(n) + A275949(n).
A060130(n) = a(n) + A275964(n).

A275959 Sum of distinct terms of A002674: a(0) = 0, a(2n) = A255411(A153880(a(n))), a(2n+1) = 1+A255411(A153880(a(n))).

Original entry on oeis.org

0, 1, 12, 13, 360, 361, 372, 373, 20160, 20161, 20172, 20173, 20520, 20521, 20532, 20533, 1814400, 1814401, 1814412, 1814413, 1814760, 1814761, 1814772, 1814773, 1834560, 1834561, 1834572, 1834573, 1834920, 1834921, 1834932, 1834933, 239500800, 239500801, 239500812, 239500813, 239501160, 239501161, 239501172, 239501173, 239520960, 239520961
Offset: 0

Views

Author

Antti Karttunen, Aug 16 2016

Keywords

Comments

Fixed points of involution A225901.
This can be also viewed as a function that reinterprets base-2 representation of n in base-((2n)!/2) where the digits are multiplied with the successive terms of A002674, thus a(0) = 0.

Crossrefs

Fixed points of A225901.
Subsequence of A275956 and of A276089.

Programs

  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==0 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a153880(n): x=(str(a007623(n)) + '0')[::-1] return 0 if n==0 else sum([int(x[i])*f(i + 1) for i in range(len(x))]) def a(n): return 0 if n==0 else a255411(a153880(a(n//2))) if n%2==0 else 1 + a255411(a153880(a((n - 1)//2))) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017

Formula

a(0) = 0, a(2n) = A255411(A153880(a(n))), a(2n+1) = 1+A255411(A153880(a(n))).
a(n) = A276089(A276091(n)).
Previous Showing 31-40 of 58 results. Next