A295813
G.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296172.
Original entry on oeis.org
1, 3, 48, 3271, 575163, 185377116, 93039467356, 66505075585875, 63970743282062646, 79580632411431634441, 124299284968805234137968, 238188439678208173206500760, 549611050835556942751087049225, 1503700734638162443238902233252144, 4814751647416985610768723994195186728, 17841762828286483988438913318683740082187, 75777421917902616009655480827109144353730842
Offset: 1
G.f.: A(x) = x + 3*x^2 + 48*x^3 + 3271*x^4 + 575163*x^5 + 185377116*x^6 + 93039467356*x^7 + 66505075585875*x^8 + 63970743282062646*x^9 + 79580632411431634441*x^10 + 124299284968805234137968*x^11 + 238188439678208173206500760*x^12 +...
The series reversion equals the logarithm of the e.g.f. of A296172, which begins:
Series_Reversion(A(x)) = x - 3*x^2 - 30*x^3 - 2686*x^4 - 517311*x^5 - 173118807*x^6 - 88535206152*x^7 - 63977172334344*x^8 - 61971659588102940*x^9 - 77470793599569049440*x^10 - 121439997599825393413344*x^11 - 233353875172602479932391040*x^12 +...+ A296173(n)*x^n +...
-
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^3 ); polcoeff(serreverse(log(Ser(A))), n)}
for(n=1, 30, print1(a(n), ", "))
A317337
O.g.f. A(x) satisfies: [x^n] exp( n^3*x*A(x) ) * (n+1 - n*A(x)) = 0 for n>=1.
Original entry on oeis.org
1, 1, 12, 729, 111440, 31377625, 14001201036, 9064452341847, 8027821828474816, 9322437359885669613, 13746212321035446900300, 25094943743950232692612534, 55574014665416527079564569056, 146797467684802516650481763597455, 456012687037844090869850529901126900, 1645914373011657806464530612985244787000
Offset: 0
O.g.f.: A(x) = 1 + x + 12*x^2 + 729*x^3 + 111440*x^4 + 31377625*x^5 + 14001201036*x^6 + 9064452341847*x^7 + 8027821828474816*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp( n^3*x*A(x) ) * (n+1 - n*A(x)) begins:
n=1: [1, 0, -23, -4376, -2674995, -3765464504, ...];
n=2: [1, 6, 0, -8908, -5494464, -7640806512, ...];
n=3: [1, 24, 549, 0, -8632395, -12056269968, ...];
n=4: [1, 60, 3616, 204712, 0, -17114998496, -45010750350080, ...];
n=5: [1, 120, 14505, 1750880, 197597325, 0, -60559334101475, ...];
n=6: [1, 210, 44352, 9406044, 1987128000, 391935493296, 0, ...]; ...
in which the coefficients of x^n in row n form a diagonal of zeros.
-
{a(n) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp( (m-1)^3*x*(Ser(A)) ) * (m - (m-1)*Ser(A)) )[m]/(m-1) ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
A317345
E.g.f. A(x) satisfies: [x^n] exp(n^3*x) / A(x)^(n^2) = 0 for n >= 1.
Original entry on oeis.org
1, 1, 5, 445, 196105, 221673401, 501981700621, 1983064113021685, 12488526496641458705, 117611695946767352571505, 1578802193598207376026165781, 29098684071572000208903027320621, 714476480265312671332820625804579865, 22796869288656035590303941174243615386665, 925701505348044648968634173494720540556875805
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 445*x^3/3! + 196105*x^4/4! + 221673401*x^5/5! + 501981700621*x^6/6! + 1983064113021685*x^7/7! + 12488526496641458705*x^8/8! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^3*x) / A(x)^(n^2) begins:
n=1: [1, 0, -4, -432, -194256, -220662720, -500627544000, ...];
n=2: [1, 4, 0, -1856, -805376, -898258176, -2023715201024, ...];
n=3: [1, 18, 288, 0, -1989792, -2154563712, -4727980751616, ...];
n=4: [1, 48, 2240, 94464, 0, -4244861952, -9137589559296, ...];
n=5: [1, 100, 9900, 959200, 84852400, 0, -15901448888000, ...];
n=6: [1, 180, 32256, 5738688, 1003636224, 161358324480, 0, ...];
n=7: [1, 294, 86240, 25218144, 7335234144, 2103824749824, 557359956846336, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 2*x^2 + 72*x^3 + 8096*x^4 + 1839000*x^5 + 695334816*x^6 + 392764566208*x^7 + 309340607492096*x^8 + ... + A317346(n)*x^n + ...
-
{a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^3*x +x*O(x^#A)) / Ser(A)^(m^2) )[m+1]/m^2 ); n!*A[n+1]}
for(n=0,20,print1(a(n),", "))
A274712
a(n) = A008277(3*n-1,n) / (n*(n+1)/2) for n>=1, where A008277 are the Stirling numbers of the second kind.
Original entry on oeis.org
1, 5, 161, 14575, 2671669, 833607138, 397984073059, 270609861663900, 248922595132336125, 298037055910658382175, 450755158919281716609746, 840770855566250627155136090, 1896671776639253430025972662743, 5091278095597325836977485757711800, 16040729445423172146341201903726496024, 58625927208516621021861960954787323034320, 246047331971247756894582227572712664877434765, 1175344062721738572130662103242054758238706829325
Offset: 1
-
{a(n) = polcoeff( 1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n-1) / (n*(n+1)/2)}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = abs( stirling(3*n-1, n, 2) / (n*(n+1)/2) )}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = 1/n! * sum(k=0, n, (-1)^(n-k) * binomial(n, k) * k^(3*n-1)) / (n*(n+1)/2)}
for(n=1, 20, print1(a(n), ", "))
A274713
Number of partitions of a {3*n-1}-set into n nonempty subsets.
Original entry on oeis.org
1, 15, 966, 145750, 40075035, 17505749898, 11143554045652, 9741955019900400, 11201516780955125625, 16392038075086211019625, 29749840488672593296243236, 65580126734167548918100615020, 172597131674172062132363512309613, 534584200037719212882636004559739000, 1924887533450780657560944228447179522880, 7973126100358260458973226689851075932667520, 37645241791600906804871080818625037726247519045
Offset: 1
O.g.f.: A(x) = x + 15*x^2 + 966*x^3 + 145750*x^4 + 40075035*x^5 + 17505749898*x^6 + 11143554045652*x^7 + 9741955019900400*x^8 +...
where
A(x) = exp(-x)*x + 2^5*exp(-2^3*x)*x^2/2! + 3^8*exp(-3^3*x)*x^3/3! + 4^11*exp(-4^3*x)*x^4/4! + 5^14*exp(-5^3*x)*x^5/5! + 6^17*exp(-6^3*x)*x^6/6! + 7^20*exp(-7^3*x)*x^7/7! + 8^23*exp(-8^3*x)*x^8/8! +...+ n^(3*n-1)*exp(-n^3*x)*x^n/n! +...
simplifies to an integer series.
-
Table[StirlingS2[3*n - 1, n], {n, 1, 20}] (* Vaclav Kotesovec, Jul 06 2016 *)
-
{a(n) = abs( stirling(3*n-1, n, 2) )}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = 1/n! * sum(k=0, n, (-1)^(n-k) * binomial(n, k) * k^(3*n-1))}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = polcoeff( 1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n-1)}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = polcoeff( sum(m=1, n, m^(3*m-1) * x^m * exp(-m^3*x +x*O(x^n))/m!), n)}
for(n=1, 20, print1(a(n), ", "))
Comments