cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A226818 Numbers of the form 5^j + 7^k, for j and k >= 0.

Original entry on oeis.org

2, 6, 8, 12, 26, 32, 50, 54, 74, 126, 132, 174, 344, 348, 368, 468, 626, 632, 674, 968, 2402, 2406, 2426, 2526, 3026, 3126, 3132, 3174, 3468, 5526, 15626, 15632, 15674, 15968, 16808, 16812, 16832, 16932, 17432, 18026, 19932, 32432, 78126, 78132, 78174, 78468
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).
Cf. A226792 ((5^j + 7^k)/2).

Programs

  • Mathematica
    a = 5; b = 7; mx = 80000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226819 Numbers of the form 6^j + 7^k, for j and k >= 0.

Original entry on oeis.org

2, 7, 8, 13, 37, 43, 50, 55, 85, 217, 223, 265, 344, 349, 379, 559, 1297, 1303, 1345, 1639, 2402, 2407, 2437, 2617, 3697, 7777, 7783, 7825, 8119, 10177, 16808, 16813, 16843, 17023, 18103, 24583, 46657, 46663, 46705, 46999, 49057, 63463, 117650, 117655, 117685
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 6; b = 7; mx = 120000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226825 Numbers of the form 7^j + 8^k, for j and k >= 0.

Original entry on oeis.org

2, 8, 9, 15, 50, 57, 65, 71, 113, 344, 351, 407, 513, 519, 561, 855, 2402, 2409, 2465, 2913, 4097, 4103, 4145, 4439, 6497, 16808, 16815, 16871, 17319, 20903, 32769, 32775, 32817, 33111, 35169, 49575, 117650, 117657, 117713, 118161, 121745, 150417, 262145
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 7; b = 8; mx = 300000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226827 Numbers of the form 3^j + 9^k, for j and k >= 0.

Original entry on oeis.org

2, 4, 10, 12, 18, 28, 36, 82, 84, 90, 108, 162, 244, 252, 324, 730, 732, 738, 756, 810, 972, 1458, 2188, 2196, 2268, 2916, 6562, 6564, 6570, 6588, 6642, 6804, 7290, 8748, 13122, 19684, 19692, 19764, 20412, 26244, 59050, 59052, 59058, 59076, 59130, 59292, 59778
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Comments

If every number 3^j + 9^k is considered, then there are duplicates of 10, 82, 90, 730, 738, 810, 6562, 6570, 6642, 7290, 59050, 59058, 59130, 59778, 65610,....

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).
Cf. A226793 ((3^j + 9^k)/2).

Programs

  • Mathematica
    a = 3; b = 9; mx = 60000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226829 Numbers of the form 5^j + 9^k, for j and k >= 0.

Original entry on oeis.org

2, 6, 10, 14, 26, 34, 82, 86, 106, 126, 134, 206, 626, 634, 706, 730, 734, 754, 854, 1354, 3126, 3134, 3206, 3854, 6562, 6566, 6586, 6686, 7186, 9686, 15626, 15634, 15706, 16354, 22186, 59050, 59054, 59074, 59174, 59674, 62174, 74674, 78126, 78134, 78206
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).
Cf. A226794 ((5^j + 9^k)/2).

Programs

  • Mathematica
    a = 5; b = 9; mx = 80000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A253212 a(n) = 9^n + 8.

Original entry on oeis.org

9, 17, 89, 737, 6569, 59057, 531449, 4782977, 43046729, 387420497, 3486784409, 31381059617, 282429536489, 2541865828337, 22876792454969, 205891132094657, 1853020188851849, 16677181699666577, 150094635296999129, 1350851717672992097, 12157665459056928809
Offset: 0

Views

Author

Vincenzo Librandi, Dec 30 2014

Keywords

Comments

Subsequence of A226832.

Crossrefs

Cf. similar sequences listed in A253208.

Programs

  • Magma
    [9^n+8: n in [0..30]];
  • Mathematica
    Table[9^n + 8, {n, 0, 40}]
    LinearRecurrence[{10,-9},{9,17},30] (* Harvey P. Dale, Jul 02 2021 *)

Formula

G.f.: (9 - 73*x)/((1 - x)*(1 - 9*x)).
a(n) = 10*a(n-1) - 9*a(n-2) for n>1.

A226811 Numbers of the form 2^j + 6^k, for j and k >= 0.

Original entry on oeis.org

2, 3, 5, 7, 8, 9, 10, 14, 17, 22, 33, 37, 38, 40, 44, 52, 65, 68, 70, 100, 129, 134, 164, 217, 218, 220, 224, 232, 248, 257, 262, 280, 292, 344, 472, 513, 518, 548, 728, 1025, 1030, 1060, 1240, 1297, 1298, 1300, 1304, 1312, 1328, 1360, 1424, 1552, 1808, 2049
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 2; b = 6; mx = 3000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226813 Numbers of the form 4^j + 6^k, for j and k >= 0.

Original entry on oeis.org

2, 5, 7, 10, 17, 22, 37, 40, 52, 65, 70, 100, 217, 220, 232, 257, 262, 280, 292, 472, 1025, 1030, 1060, 1240, 1297, 1300, 1312, 1360, 1552, 2320, 4097, 4102, 4132, 4312, 5392, 7777, 7780, 7792, 7840, 8032, 8800, 11872, 16385, 16390, 16420, 16600, 17680, 24160
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 4; b = 6; mx = 25000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226815 Numbers of the form 2^j + 7^k, for j and k >= 0.

Original entry on oeis.org

2, 3, 5, 8, 9, 11, 15, 17, 23, 33, 39, 50, 51, 53, 57, 65, 71, 81, 113, 129, 135, 177, 257, 263, 305, 344, 345, 347, 351, 359, 375, 407, 471, 513, 519, 561, 599, 855, 1025, 1031, 1073, 1367, 2049, 2055, 2097, 2391, 2402, 2403, 2405, 2409, 2417, 2433, 2465
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 2; b = 7; mx = 3000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226817 Numbers of the form 4^j + 7^k, for j and k >= 0.

Original entry on oeis.org

2, 5, 8, 11, 17, 23, 50, 53, 65, 71, 113, 257, 263, 305, 344, 347, 359, 407, 599, 1025, 1031, 1073, 1367, 2402, 2405, 2417, 2465, 2657, 3425, 4097, 4103, 4145, 4439, 6497, 16385, 16391, 16433, 16727, 16808, 16811, 16823, 16871, 17063, 17831, 18785, 20903
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 4; b = 7; mx = 30000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]
Previous Showing 11-20 of 28 results. Next