cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A239614 a(n) = A239611(n) / A079458(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 8, 2, 6, 2, 8, 4, 4, 2, 12, 3, 4, 4, 8, 2, 8, 2, 10, 4, 4, 4, 12, 2, 4, 4, 12, 2, 8, 2, 8, 6, 4, 2, 16, 3, 6, 4, 8, 2, 8, 4, 12, 4, 4, 2, 16, 2, 4, 6, 12, 4, 8, 2, 8, 4, 8, 2, 18, 2, 4, 6, 8, 4, 8, 2, 16, 5, 4, 2, 16, 4, 4, 4, 12, 2, 12, 4, 8, 4, 4, 4, 20, 2, 6, 6, 12, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative because both A239611 and A079458 are. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    a239611[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}];
    a079458[n_] := Product[{p, e} = pe; Which[p==2, 2^(2e-1), Mod[p, 4]==3, (p^2-1)p^(2e-2), Mod[p, 4]==1, (p-1)^2 p^(2e-2)], {pe, FactorInteger[n]}];
    a[1] = 1; a[n_] := a239611[n]/a079458[n];
    Array[a, 105] (* Jean-François Alcover, Dec 04 2018 *)

Formula

Conjectures from Ridouane Oudra, Jul 22 2024: (Start)
a(n) = A010710(n)*tau(n) - 2*tau(2n) ;
a(2*n) = 2*tau(n) ;
a(2*n+1) = tau(2*n+1). (End)

Extensions

More terms from Antti Karttunen, Sep 23 2017

A239615 a(n) = n * A239612(n) / A053191(n).

Original entry on oeis.org

1, 4, 5, 14, 11, 20, 13, 40, 21, 44, 21, 70, 27, 52, 55, 104, 35, 84, 37, 154, 65, 84, 45, 200, 85, 108, 81, 182, 59, 220, 61, 256, 105, 140, 143, 294, 75, 148, 135, 440, 83, 260, 85, 294, 231, 180, 93, 520, 133, 340, 175, 378, 107, 324, 231, 520, 185, 236
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative because both A239612 and A053191 are. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Boole[GCD[x^2 + y^2 + z^2, n] == 1] GCD[x^2 + y^2 + z^2 - 1, n], {x, 1, n}, {y, 1, n}, {z, 1, n}]/(n EulerPhi[n]);
    Array[a, 60] (* Jean-François Alcover, Nov 22 2018 *)
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^3)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))/(n * eulerphi(n))} \\ Andrew Howroyd, Aug 07 2018

A227477 Exponent of the group of Lipschitz quaternions in a reduced system modulo n.

Original entry on oeis.org

1, 2, 24, 4, 120, 24, 336, 8, 72, 120
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    cuaternios[n_] := Flatten[Table[{{a,-b,d ,-c},{b,a,-c,-d},{-d,c,a,-b},{c,d,b,a}},{a,n},{b,n},{c,n},{d,n}],3]; A227499[n_]:=Length@Select[cuaternios[n],GCD[Det[#],n]== 1 &]; cuater[n_] := Select[cuaternios[n], GCD[Det[#], n] == 1 &]; exp[1]=1; expo[M_,n_]:= Min@Select[Divisors@A227499[n],Mod[MatrixPower[M, #],n] == IdentityMatrix[4]&];a[n_] := lcm@Table[expo[cuater[n][[i]], n], {i, A227499[n]}]; lcm[lis_] := {aux = 1; Do[aux = LCM[aux, lis[[i]]], {i, 1, Length[lis]}]; aux}[[1]]; Table[a[n], {n,2,10}]

A227867 Number of Lipschitz quaternions X such that X^2 == 1 (mod n).

Original entry on oeis.org

1, 8, 14, 32, 32, 112, 58, 32, 110, 256, 134, 448, 184, 464, 448, 32, 308, 880, 382, 1024, 812, 1072, 554, 448, 752, 1472, 974, 1856, 872, 3584, 994, 32, 1876, 2464, 1856, 3520, 1408, 3056, 2576, 1024, 1724, 6496, 1894, 4288, 3520, 4432, 2258, 448, 2746, 6016, 4312, 5888
Offset: 1

Views

Author

Keywords

Comments

A quaternion q = a + bi + cj + dk is congruent to 1 (mod n) iff a == 1 (mod n) and b == c == d == 0 (mod n).

Crossrefs

Programs

  • Mathematica
    cuaternios[n_] := Flatten[Table[{{a, -b, d, -c}, {b, a, -c, -d}, {-d, c, a, -b}, {c, d, b, a}}, {a, n}, {b, n}, {c, n}, {d, n}], 3]; invo[n_] := invo[n] = Length@Select[cuaternios[n], Mod[#.# - IdentityMatrix[4],n] == 0*# &]; Table[invo[n], {n, 1, 25}]

Extensions

More terms from Amiram Eldar, May 06 2024

A227628 Number of Lipschitz quaternions X such that X^2 == X (mod n).

Original entry on oeis.org

1, 2, 14, 2, 32, 28, 58, 2, 110, 64, 134, 28, 184, 116, 448, 2, 308, 220, 382, 64, 812, 268, 554, 28, 752, 368, 974, 116, 872, 896, 994, 2, 1876, 616, 1856, 220, 1408, 764, 2576, 64, 1724, 1624, 1894, 268, 3520, 1108, 2258, 28, 2746, 1504
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    cuaternios[n_] := Flatten[Table[{{ a, -b, d, -c}, {b, a, -c, -d}, {-d, c, a, -b}, {c, d, b, a}}, {a, n}, {b, n}, {c, n}, {d, n}], 3]; cuater[n_] := Length@Select[cuaternios[n], Mod[#.# - #, n] == 0*# &]; Table[cuater[n],{n,1,100}]
Previous Showing 11-15 of 15 results.