A274708
A statistic on orbital systems over n sectors: the number of orbitals with k peaks.
Original entry on oeis.org
1, 1, 2, 4, 2, 4, 2, 12, 15, 3, 10, 8, 2, 38, 68, 30, 4, 26, 30, 12, 2, 121, 272, 183, 49, 5, 70, 104, 60, 16, 2, 384, 1026, 912, 372, 72, 6, 192, 350, 260, 100, 20, 2, 1214, 3727, 4095, 2220, 650, 99, 7, 534, 1152, 1050, 520, 150, 24, 2, 3822, 13200, 17178, 11600, 4510, 1032, 130, 8
Offset: 0
Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
[ n] [k=0,1,2,...] [row sum]
[ 0] [ 1] 1
[ 1] [ 1] 1
[ 2] [ 2] 2
[ 3] [ 4, 2] 6
[ 4] [ 4, 2] 6
[ 5] [ 12, 15, 3] 30
[ 6] [ 10, 8, 2] 20
[ 7] [ 38, 68, 30, 4] 140
[ 8] [ 26, 30, 12, 2] 70
[ 9] [121, 272, 183, 49, 5] 630
[10] [ 70, 104, 60, 16, 2] 252
[11] [384, 1026, 912, 372, 72, 6] 2772
[12] [192, 350, 260, 100, 20, 2] 924
T(6, 2) = 2 because the two orbitals [-1, 1, -1, 1, -1, 1] and [1, -1, 1, -1, 1, -1] have 2 peaks.
A274888
Triangle read by rows: the q-analog of the swinging factorial which is defined as q-multinomial([floor(n/2), n mod 2, floor(n/2)]).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 4, 5, 6, 5, 4, 2, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 4, 7, 10, 13, 16, 17, 17, 16, 13, 10, 7, 4, 2, 1, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 1, 2, 4, 7, 12, 17, 24, 31, 39, 45, 51, 54, 56, 54, 51, 45, 39, 31, 24, 17, 12, 7, 4, 2, 1
Offset: 0
The polynomials start:
[0] 1
[1] 1
[2] q + 1
[3] (q + 1) * (q^2 + q + 1)
[4] (q^2 + 1) * (q^2 + q + 1)
[5] (q^2 + 1) * (q^2 + q + 1) * (q^4 + q^3 + q^2 + q + 1)
[6] (q + 1) * (q^2 - q + 1) * (q^2 + 1) * (q^4 + q^3 + q^2 + q + 1)
The coefficients of the polynomials start:
[n] [k=0,1,2,...] [row sum]
[0] [1] [1]
[1] [1] [1]
[2] [1, 1] [2]
[3] [1, 2, 2, 1] [6]
[4] [1, 1, 2, 1, 1] [6]
[5] [1, 2, 4, 5, 6, 5, 4, 2, 1] [30]
[6] [1, 1, 2, 3, 3, 3, 3, 2, 1, 1] [20]
[7] [1, 2, 4, 7, 10, 13, 16, 17, 17, 16, 13, 10, 7, 4, 2, 1] [140]
[8] [1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1] [70]
T(5, 4) = 6 because the 2 orbitals [-1,-1,1,1,0] and [-1,0,1,1,-1] have at position 4 and the 4 orbitals [0,-1,1,-1,1], [1,-1,0,-1,1], [1,-1,1,-1,0] and [1,0,1,-1,-1] at positions 1 and 3 a down step.
-
QSwingFactorial_coeffs := proc(n) local P,a,b;
a := mul((p^(n-i)-1)/(p^(i+1)-1),i=0..iquo(n,2)-1);
b := ((p^(iquo(n,2)+1)-1)/(p-1))^((1-(-1)^n)/2);
P := simplify(a*b); seq(coeff(P,p,j),j=0..degree(P)) end:
for n from 0 to 9 do print(QSwingFactorial_coeffs(n)) od;
# Alternatively (recursive):
with(QDifferenceEquations):
QSwingRec := proc(n,q) local r; if n = 0 then return 1 fi:
if irem(n,2) = 0 then r := (1+q^(n/2))/QBrackets(n/2,q)
else r := QBrackets(n,q) fi; r*QSwingRec(n-1,q) end:
Trow := proc(n) expand(QSimplify(QSwingRec(n,q)));
seq(coeff(%,q,j),j=0..degree(%)) end: seq(Trow(n),n=0..10);
-
p[n_] := QFactorial[n, q] / QFactorial[Quotient[n, 2], q]^2
Table[CoefficientList[p[n] // FunctionExpand, q], {n,0,9}] // Flatten
-
from sage.combinat.q_analogues import q_factorial
def q_swing_factorial(n, q=None):
return q_factorial(n)//q_factorial(n//2)^2
for n in (0..8): print(q_swing_factorial(n).list())
-
# uses[unit_orbitals from A274709]
# Brute force counting
def orbital_major_index(n):
S = [0]*(((n+1)//2)^2 + ((n+1) % 2))
for u in unit_orbitals(n):
L = [i+1 if u[i+1] < u[i] else 0 for i in (0..n-2)]
# i+1 because u is 0-based whereas convention assumes 1-base.
S[sum(L)] += 1
return S
for n in (0..9): print(orbital_major_index(n))
Original entry on oeis.org
1, 1, 2, 2, 2, 6, 4, 20, 10, 70, 28, 252, 84, 924, 264, 3432, 858, 12870, 2860, 48620, 9724, 184756, 33592, 705432, 117572, 2704156, 416024, 10400600, 1485800, 40116600, 5348880, 155117520, 19389690, 601080390, 70715340, 2333606220, 259289580, 9075135300
Offset: 0
-
A241543 := proc(n)
if n < 2 then 1
else 2*iquo(n,2)*(n-2)!/iquo(n,2)!^2
fi end:
seq(A241543(n), n=0..37);
A241810
Number of balanced orbitals over n sectors.
Original entry on oeis.org
1, 1, 0, 0, 2, 6, 0, 6, 8, 36, 0, 88, 58, 376, 0, 1096, 526, 4476, 0, 14200, 5448, 57284, 0, 190206, 61108, 764812, 0, 2615268, 723354, 10499504, 0, 36677626, 8908546, 147110276, 0, 522288944, 113093022
Offset: 0
-
np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--];For[j=Length[z],z[[j]]<=z[[i-1]],j--];Join[Take[z,i-2],{z[[j]]},Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]];o=Table[1,{16}];
n=0;f=0;Print[1];Print[1];While[n<16,n++;f=1-f;If[OddQ[f*n],Print[0],p=Join[-Take[o,n],{f},Take[o,n-f]];c=0;Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++];p=np[p],{(2*n+1-f)!/(2*n!^2)}];Print[2*c]];n=n-f]
(* Hans Havermann, May 10 2014 *)
-
def A241810(n):
if n == 0: return 1
A = 0
T = [0] if is_odd(n) else []
for i in (1..n//2):
T.append(-1); T.append(1)
for p in Permutations(T):
P = 0; S = 0
for k in (0..n-1):
P += p[k]; S += P
if S == 0: A += 1
return A
[A241810(n) for n in (0..32)]
A242087
Number of balanced orbitals over an odd number of sectors.
Original entry on oeis.org
1, 0, 6, 6, 36, 88, 376, 1096, 4476, 14200, 57284, 190206, 764812, 2615268, 10499504, 36677626, 147110276, 522288944
Offset: 0
-
np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--]; For[j=Length[z],z[[j]]<=z[[i-1]],j--]; Join[Take[z,i-2],{z[[j]]}, Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]]; o=Table[1,{16}];
Print[1]; Do[p=Join[-Take[o,n],{0},Take[o,n]]; c=0; Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++]; p=np[p],{(2*n+1)!/(2*n!^2)}]; Print[2*c],{n,16}]
(* Hans Havermann, May 10 2014 *)
-
def A242087(n):
if n == 0: return 1
A = 0; T = [0]
for i in (1..n):
T.append(-1); T.append(1)
for p in Permutations(T):
P = 0; S = 0
for k in (0..2*n):
P += p[k]; S += P
if S == 0: A += 1
return A
[A242087(n) for n in (0..10)]
A276666
a(n) = (n-1)*Catalan(n).
Original entry on oeis.org
-1, 0, 2, 10, 42, 168, 660, 2574, 10010, 38896, 151164, 587860, 2288132, 8914800, 34767720, 135727830, 530365050, 2074316640, 8119857900, 31810737420, 124718287980, 489325340400, 1921133836440, 7547311500300, 29667795388452, 116686713634848, 459183826803800
Offset: 0
A024483 is a variant of this sequence.
-
Concatenation([-1], List([1..30], n-> 2*Binomial(2*n-1, n+1))); # G. C. Greubel, Aug 29 2019
-
[(n-1)*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Sep 13 2016
-
f := (1-3*x)/(x*sqrt(1-4*x))-1/x:
series(f,x,29): seq(coeff(%,x,n), n=0..26);
A276666 := n -> (n^2-1)*(2*n)!/(n+1)!^2:
seq(A276666(n), n=0..26);
-
Table[(n - 1) CatalanNumber[n], {n, 0, 30}] (* Vincenzo Librandi, Sep 13 2016 *)
-
a(n) = if(n==0,-1, 2*binomial(2*n-1, n+1)); \\ G. C. Greubel, Aug 29 2019
-
A276666 = lambda n: (n - 1) * catalan_number(n)
[A276666(n) for n in range(27)]
A275325
Triangle read by rows: number of orbitals over n sectors which have a Catalan decomposition into k parts.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 6, 0, 4, 2, 0, 20, 10, 0, 10, 8, 2, 0, 70, 56, 14, 0, 28, 28, 12, 2, 0, 252, 252, 108, 18, 0, 84, 96, 54, 16, 2, 0, 924, 1056, 594, 176, 22, 0, 264, 330, 220, 88, 20, 2, 0, 3432, 4290, 2860, 1144, 260, 26, 0, 858, 1144, 858, 416, 130, 24, 2
Offset: 0
Table starts:
[ n] [k=0,1,2,...] [row sum]
[ 0] [1] 1
[ 1] [0, 1] 1
[ 2] [0, 2] 2
[ 3] [0, 6] 6
[ 4] [0, 4, 2] 6
[ 5] [0, 20, 10] 30
[ 6] [0, 10, 8, 2] 20
[ 7] [0, 70, 56, 14] 140
[ 8] [0, 28, 28, 12, 2] 70
[ 9] [0, 252, 252, 108, 18] 630
[10] [0, 84, 96, 54, 16, 2] 252
[11] [0, 924, 1056, 594, 176, 22] 2772
[12] [0, 264, 330, 220, 88, 20, 2] 924
For example T(2*n, n) = 2 counts the Catalan decompositions
[[-1, 1], [1, -1], [-1, 1], ..., [(-1)^n, (-1)^(n+1)]] and
[[1, -1], [-1, 1], [1, -1], ..., [(-1)^(n+1), (-1)^n]].
-
# uses[unit_orbitals from A274709]
# Brute force counting
from itertools import accumulate
def catalan_factors(P):
def bisect(orb):
i = 1
A = list(accumulate(orb))
if orb[1] > 0 if orb[0] == 0 else orb[0] > 0:
while i < len(A) and A[i] >= 0: i += 1
else:
while i < len(A) and A[i] <= 0: i += 1
return i
R = []
while P:
i = bisect(P)
R.append(P[:i])
P = P[i:]
return R
def orbital_factors(n):
if n == 0: return [1]
if n == 1: return [0, 1]
S = [0]*(n//2 + 1)
for o in unit_orbitals(n):
S[len(catalan_factors(o))] += 1
return S
for n in (0..9): print(orbital_factors(n))
A275333
Triangle read by rows, the break statistic on orbital systems over n sectors.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 3, 3, 6, 6, 6, 3, 3, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 4, 4, 8, 12, 16, 16, 20, 16, 16, 12, 8, 4, 4, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 5, 5, 10, 15, 25, 30, 40, 45, 55, 55, 60, 55, 55, 45, 40, 30, 25, 15, 10, 5, 5
Offset: 0
The length of row n is floor(n^2/4 + 1). Triangle starts:
[n] [k=0,1,2,...] [row sum]
[0] [1] 1
[1] [1] 1
[2] [1, 1] 2
[3] [2, 2, 2] 6
[4] [1, 1, 2, 1, 1] 6
[5] [3, 3, 6, 6, 6, 3, 3] 30
[6] [1, 1, 2, 3, 3, 3, 3, 2, 1, 1] 20
[7] [4, 4, 8, 12, 16, 16, 20, 16, 16, 12, 8, 4, 4] 140
[8] [1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1] 70
[9] [5, 5, 10, 15, 25, 30, 40, 45, 55, 55, 60, 55, 55, 45, 40, 30,25,15,10,5,5] 630
T(5, 5) = 3 because the three orbitals [1, -1, -1, 1, 0], [1, -1, 0, 1, -1] and [1, 0, -1, 1, -1] have at position 1 and position 4 an up-step which is immediately followed by a step which is not an up-step.
Comments