cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A274708 A statistic on orbital systems over n sectors: the number of orbitals with k peaks.

Original entry on oeis.org

1, 1, 2, 4, 2, 4, 2, 12, 15, 3, 10, 8, 2, 38, 68, 30, 4, 26, 30, 12, 2, 121, 272, 183, 49, 5, 70, 104, 60, 16, 2, 384, 1026, 912, 372, 72, 6, 192, 350, 260, 100, 20, 2, 1214, 3727, 4095, 2220, 650, 99, 7, 534, 1152, 1050, 520, 150, 24, 2, 3822, 13200, 17178, 11600, 4510, 1032, 130, 8
Offset: 0

Views

Author

Peter Luschny, Jul 10 2016

Keywords

Comments

The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
An orbital w has a 'peak' at i+1 when signum(w[i]) < signum(w[i+1]) and signum(w[i+1]) > signum(w[i+2]).
A097692 is a subtriangle.

Examples

			Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
[ n] [k=0,1,2,...]               [row sum]
[ 0] [  1]                           1
[ 1] [  1]                           1
[ 2] [  2]                           2
[ 3] [  4,    2]                     6
[ 4] [  4,    2]                     6
[ 5] [ 12,   15,   3]               30
[ 6] [ 10,    8,   2]               20
[ 7] [ 38,   68,  30,   4]         140
[ 8] [ 26,   30,  12,   2]          70
[ 9] [121,  272, 183,  49,  5]     630
[10] [ 70,  104,  60,  16,  2]     252
[11] [384, 1026, 912, 372, 72, 6] 2772
[12] [192,  350, 260, 100, 20, 2]  924
T(6, 2) = 2 because the two orbitals [-1, 1, -1, 1, -1, 1] and [1, -1, 1, -1, 1, -1] have 2 peaks.
		

Crossrefs

Cf. A025565 (even col. 0), A056040 (row sum), A097692, A232500.
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def orbital_peaks(n):
        if n == 0: return [1]
        S = [0]*((n+1)//2)
        for u in unit_orbitals(n):
            L = [1 if sgn(u[i]) < sgn(u[i+1]) and sgn(u[i+1]) > sgn(u[i+2]) else 0 for i in (0..n-3)]
            S[sum(L)] += 1
        return S
    for n in (0..12): print(orbital_peaks(n))

A274888 Triangle read by rows: the q-analog of the swinging factorial which is defined as q-multinomial([floor(n/2), n mod 2, floor(n/2)]).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 4, 5, 6, 5, 4, 2, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 4, 7, 10, 13, 16, 17, 17, 16, 13, 10, 7, 4, 2, 1, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 1, 2, 4, 7, 12, 17, 24, 31, 39, 45, 51, 54, 56, 54, 51, 45, 39, 31, 24, 17, 12, 7, 4, 2, 1
Offset: 0

Views

Author

Peter Luschny, Jul 19 2016

Keywords

Comments

The q-swing_factorial(n) is a univariate polynomial over the integers with degree floor((n+1)/2)^2 + ((n+1) mod 2) and at least floor(n/2) irreducible factors.
Evaluated at q=1 q-swing_factorial(n) gives the swinging factorial A056040(n).
Combinatorial interpretation: The definition of an orbital system is given in A232500 and in the link 'Orbitals'. The number of orbitals over n sectors is counted by the swinging factorial.
The major index of an orbital is the sum of the positions of steps which are immediately followed by a step with strictly smaller value. This statistic is an extension of the major index statistic given in A063746 which reappears in the even numbered rows here. This reflects the fact that the swinging factorial can be seen as an extension of the central binomial. As in the case of the central binomial also in the case of the swinging factorial the major index coincides with its q-analog.

Examples

			The polynomials start:
[0] 1
[1] 1
[2] q + 1
[3] (q + 1) * (q^2 + q + 1)
[4] (q^2 + 1) * (q^2 + q + 1)
[5] (q^2 + 1) * (q^2 + q + 1) * (q^4 + q^3 + q^2 + q + 1)
[6] (q + 1) * (q^2 - q + 1) * (q^2 + 1) * (q^4 + q^3 + q^2 + q + 1)
The coefficients of the polynomials start:
[n] [k=0,1,2,...] [row sum]
[0] [1] [1]
[1] [1] [1]
[2] [1, 1] [2]
[3] [1, 2, 2, 1] [6]
[4] [1, 1, 2, 1, 1] [6]
[5] [1, 2, 4, 5, 6, 5, 4, 2, 1] [30]
[6] [1, 1, 2, 3, 3, 3, 3, 2, 1, 1] [20]
[7] [1, 2, 4, 7, 10, 13, 16, 17, 17, 16, 13, 10, 7, 4, 2, 1] [140]
[8] [1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1] [70]
T(5, 4) = 6 because the 2 orbitals [-1,-1,1,1,0] and [-1,0,1,1,-1] have at position 4 and the 4 orbitals [0,-1,1,-1,1], [1,-1,0,-1,1], [1,-1,1,-1,0] and [1,0,1,-1,-1] at positions 1 and 3 a down step.
		

Crossrefs

Cf. A056040 (row sums), A274887 (q-factorial), A063746 (q-central_binomial).
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Maple
    QSwingFactorial_coeffs := proc(n) local P,a,b;
    a := mul((p^(n-i)-1)/(p^(i+1)-1),i=0..iquo(n,2)-1);
    b := ((p^(iquo(n,2)+1)-1)/(p-1))^((1-(-1)^n)/2);
    P := simplify(a*b); seq(coeff(P,p,j),j=0..degree(P)) end:
    for n from 0 to 9 do print(QSwingFactorial_coeffs(n)) od;
    # Alternatively (recursive):
    with(QDifferenceEquations):
    QSwingRec := proc(n,q) local r; if n = 0 then return 1 fi:
    if irem(n,2) = 0 then r := (1+q^(n/2))/QBrackets(n/2,q)
    else r := QBrackets(n,q) fi; r*QSwingRec(n-1,q) end:
    Trow := proc(n) expand(QSimplify(QSwingRec(n,q)));
    seq(coeff(%,q,j),j=0..degree(%)) end: seq(Trow(n),n=0..10);
  • Mathematica
    p[n_] := QFactorial[n, q] / QFactorial[Quotient[n, 2], q]^2
    Table[CoefficientList[p[n] // FunctionExpand, q], {n,0,9}] // Flatten
  • Sage
    from sage.combinat.q_analogues import q_factorial
    def q_swing_factorial(n, q=None):
        return q_factorial(n)//q_factorial(n//2)^2
    for n in (0..8): print(q_swing_factorial(n).list())
    
  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def orbital_major_index(n):
        S = [0]*(((n+1)//2)^2 + ((n+1) % 2))
        for u in unit_orbitals(n):
            L = [i+1 if u[i+1] < u[i] else 0 for i in (0..n-2)]
            # i+1 because u is 0-based whereas convention assumes 1-base.
            S[sum(L)] += 1
        return S
    for n in (0..9): print(orbital_major_index(n))

Formula

q_swing_factorial(n) = q_factorial(n)/q_factorial(floor(n/2))^2.
q_swing_factorial(n) = q_binomial(n-eta(n),floor((n-eta(n))/2))*q_int(n)^eta(n) with eta(n) = (1-(-1)^n)/2.
Recurrence: q_swing_factorial(0,q) = 1 and for n>0 q_swing_factorial(n,q) = r*q_swing_factorial(n-1,q) with r = (1+q^(n/2))/[n/2;q] if n is even else r = [n;q]. Here [a;q] are the q_brackets.
The generating polynomial for row n is P_n(p) = ((p^(floor(n/2)+1)-1)/(p-1))^((1-(-1)^n)/2)*Product_{i=0..floor(n/2)-1}((p^(n-i)-1)/(p^(i+1)-1)).

A241543 a(n) = A241477(n, n).

Original entry on oeis.org

1, 1, 2, 2, 2, 6, 4, 20, 10, 70, 28, 252, 84, 924, 264, 3432, 858, 12870, 2860, 48620, 9724, 184756, 33592, 705432, 117572, 2704156, 416024, 10400600, 1485800, 40116600, 5348880, 155117520, 19389690, 601080390, 70715340, 2333606220, 259289580, 9075135300
Offset: 0

Views

Author

Peter Luschny, Apr 25 2014

Keywords

Comments

See A241477 and A232500 for the combinatorial definitions.

Crossrefs

Programs

  • Maple
    A241543 := proc(n)
        if n < 2 then 1
      else 2*iquo(n,2)*(n-2)!/iquo(n,2)!^2
        fi end:
    seq(A241543(n), n=0..37);

Formula

a(n) = 2*floor(n/2)*(n-2)!/floor(n/2)!^2 for n>=2.
a(n+2) = 2*A057977(n) for n>=0. - Peter Luschny, Jul 17 2016

A241810 Number of balanced orbitals over n sectors.

Original entry on oeis.org

1, 1, 0, 0, 2, 6, 0, 6, 8, 36, 0, 88, 58, 376, 0, 1096, 526, 4476, 0, 14200, 5448, 57284, 0, 190206, 61108, 764812, 0, 2615268, 723354, 10499504, 0, 36677626, 8908546, 147110276, 0, 522288944, 113093022
Offset: 0

Views

Author

Peter Luschny, Apr 29 2014

Keywords

Comments

For the combinatorial definitions see A232500. An orbital is balanced if its integral is 0. The integral of an orbital w over n sectors is Sum_{k=1..n} Sum_{i=1..k} w(i) where w(i) are the jumps of the orbital represented by -1, 0, 1.

Crossrefs

Programs

  • Mathematica
    np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--];For[j=Length[z],z[[j]]<=z[[i-1]],j--];Join[Take[z,i-2],{z[[j]]},Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]];o=Table[1,{16}];
    n=0;f=0;Print[1];Print[1];While[n<16,n++;f=1-f;If[OddQ[f*n],Print[0],p=Join[-Take[o,n],{f},Take[o,n-f]];c=0;Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++];p=np[p],{(2*n+1-f)!/(2*n!^2)}];Print[2*c]];n=n-f]
    (* Hans Havermann, May 10 2014 *)
  • Sage
    def A241810(n):
        if n == 0: return 1
        A = 0
        T = [0] if is_odd(n) else []
        for i in (1..n//2):
            T.append(-1); T.append(1)
        for p in Permutations(T):
            P = 0; S = 0
            for k in (0..n-1):
                P += p[k]; S += P
            if S == 0: A += 1
        return A
    [A241810(n) for n in (0..32)]

Formula

a(2*n) = A204459(2, n).
a(2*n+1) = A242087(n).
a(4*n) = A063074(n) = A029895(2*n) = A067059(2*n, 2*n).
a(4*n+2) = 0 for all n (proved by H. Havermann).

Extensions

More terms from Hans Havermann, May 10 2014
a(35), a(36) from Hans Havermann, May 23 2014

A242087 Number of balanced orbitals over an odd number of sectors.

Original entry on oeis.org

1, 0, 6, 6, 36, 88, 376, 1096, 4476, 14200, 57284, 190206, 764812, 2615268, 10499504, 36677626, 147110276, 522288944
Offset: 0

Views

Author

Peter Luschny, May 04 2014

Keywords

Comments

See A241810 and A232500 for the combinatorial definitions.

Programs

  • Mathematica
    np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--]; For[j=Length[z],z[[j]]<=z[[i-1]],j--]; Join[Take[z,i-2],{z[[j]]}, Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]]; o=Table[1,{16}];
    Print[1]; Do[p=Join[-Take[o,n],{0},Take[o,n]]; c=0; Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++]; p=np[p],{(2*n+1)!/(2*n!^2)}]; Print[2*c],{n,16}]
    (* Hans Havermann, May 10 2014 *)
  • Sage
    def A242087(n):
        if n == 0: return 1
        A = 0; T = [0]
        for i in (1..n):
            T.append(-1); T.append(1)
        for p in Permutations(T):
            P = 0; S = 0
            for k in (0..2*n):
                P += p[k]; S += P
            if S == 0: A += 1
        return A
    [A242087(n) for n in (0..10)]

Formula

a(n) = A241810(2*n+1).

Extensions

More terms from Hans Havermann, May 10 2014
a(17) from Hans Havermann, May 23 2014

A276666 a(n) = (n-1)*Catalan(n).

Original entry on oeis.org

-1, 0, 2, 10, 42, 168, 660, 2574, 10010, 38896, 151164, 587860, 2288132, 8914800, 34767720, 135727830, 530365050, 2074316640, 8119857900, 31810737420, 124718287980, 489325340400, 1921133836440, 7547311500300, 29667795388452, 116686713634848, 459183826803800
Offset: 0

Views

Author

Peter Luschny, Sep 12 2016

Keywords

Crossrefs

A024483 is a variant of this sequence.

Programs

  • GAP
    Concatenation([-1], List([1..30], n-> 2*Binomial(2*n-1, n+1))); # G. C. Greubel, Aug 29 2019
  • Magma
    [(n-1)*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Sep 13 2016
    
  • Maple
    f := (1-3*x)/(x*sqrt(1-4*x))-1/x:
    series(f,x,29): seq(coeff(%,x,n), n=0..26);
    A276666 := n -> (n^2-1)*(2*n)!/(n+1)!^2:
    seq(A276666(n), n=0..26);
  • Mathematica
    Table[(n - 1) CatalanNumber[n], {n, 0, 30}] (* Vincenzo Librandi, Sep 13 2016 *)
  • PARI
    a(n) = if(n==0,-1, 2*binomial(2*n-1, n+1)); \\ G. C. Greubel, Aug 29 2019
    
  • Sage
    A276666 = lambda n: (n - 1) * catalan_number(n)
    [A276666(n) for n in range(27)]
    

Formula

a(n) = [x^n] (1-3*x)/(x*sqrt(1-4*x))-1/x.
a(n) = 4^n*(n-1)*hypergeom([3/2, -n], [2], 1).
a(n) = 4^n*(n-1)*JacobiP(n,1,-1/2-n,-1)/(n+1).
a(n) = (2*n)! [x^(2^n)]( BesselI(2,2*x) - (1+1/x)*BesselI(1,2*x) ).
a(n) = binomial(2*n,n) - 2*Catalan(n). (See Geoffrey Critzer's formula in A024483).
a(n) = A056040(2*n) - 2*A057977(2*n).
a(n) = A056040(2*n)*(1-2/(n+1)) = (n^2-1)*(2*n)!/(n+1)!^2.
a(n) = A232500(2*n).
a(n) = a(n-1)*2*(n-1)*(2*n-1)/((n-2)*(n+1)) for n > 2. - Chai Wah Wu, Sep 12 2016
a(n) = A024483(n+1) for n>0. - R. J. Mathar, Sep 13 2016
a(n) = A000984(n+1)-3*A000984(n). - Ezhilarasu Velayutham, Aug 27 2019
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=2} 1/a(n) = 5/6 - Pi/(9*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 26*sqrt(5)*log(phi)/25 - 7/10, where phi is the golden ratio (A001622). (End)

A275325 Triangle read by rows: number of orbitals over n sectors which have a Catalan decomposition into k parts.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 6, 0, 4, 2, 0, 20, 10, 0, 10, 8, 2, 0, 70, 56, 14, 0, 28, 28, 12, 2, 0, 252, 252, 108, 18, 0, 84, 96, 54, 16, 2, 0, 924, 1056, 594, 176, 22, 0, 264, 330, 220, 88, 20, 2, 0, 3432, 4290, 2860, 1144, 260, 26, 0, 858, 1144, 858, 416, 130, 24, 2
Offset: 0

Views

Author

Peter Luschny, Aug 15 2016

Keywords

Comments

The definition of an orbital system is given in A232500.
The Catalan decomposition of an orbital w is a list of orbitals which are alternately entirely above or below the main circle ('above' and 'below' in the weak sense) such that their concatenation equals w. If a zero is on the border of two orbitals then it is allocated to the first one. By convention T(0,0) = 1.
The number of orbitals over n sectors is counted by the swinging factorial A056040.

Examples

			Table starts:
[ n] [k=0,1,2,...] [row sum]
[ 0] [1] 1
[ 1] [0, 1] 1
[ 2] [0, 2] 2
[ 3] [0, 6] 6
[ 4] [0, 4, 2] 6
[ 5] [0, 20, 10] 30
[ 6] [0, 10, 8, 2] 20
[ 7] [0, 70, 56, 14] 140
[ 8] [0, 28, 28, 12, 2] 70
[ 9] [0, 252, 252, 108, 18] 630
[10] [0, 84, 96, 54, 16, 2] 252
[11] [0, 924, 1056, 594, 176,  22] 2772
[12] [0, 264, 330, 220, 88, 20, 2] 924
For example T(2*n, n) = 2 counts the Catalan decompositions
[[-1, 1], [1, -1], [-1, 1], ..., [(-1)^n, (-1)^(n+1)]] and
[[1, -1], [-1, 1], [1, -1], ..., [(-1)^(n+1), (-1)^n]].
		

Crossrefs

Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    from itertools import accumulate
    def catalan_factors(P):
        def bisect(orb):
            i = 1
            A = list(accumulate(orb))
            if orb[1] > 0 if orb[0] == 0 else orb[0] > 0:
                while i < len(A) and A[i] >= 0: i += 1
            else:
                while i < len(A) and A[i] <= 0: i += 1
            return i
        R = []
        while P:
            i = bisect(P)
            R.append(P[:i])
            P = P[i:]
        return R
    def orbital_factors(n):
        if n == 0: return [1]
        if n == 1: return [0, 1]
        S = [0]*(n//2 + 1)
        for o in unit_orbitals(n):
            S[len(catalan_factors(o))] += 1
        return S
    for n in (0..9): print(orbital_factors(n))

Formula

T(n,1) = 2*floor((n+2)/2)*n!/floor((n+2)/2)!^2 = A241543(n+2) for n>=2.
For odd n>1 T(n,1) = Sum_{k>=0} T(n+1,k).
A056040(n) - T(n,1) = A232500(n) for n>=2.
Main diagonal: T(n, floor(n/2)) = A266722(n) for n>1.
A275326(n,k) = ceiling(T(n,k)/2).

A275333 Triangle read by rows, the break statistic on orbital systems over n sectors.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 3, 3, 6, 6, 6, 3, 3, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 4, 4, 8, 12, 16, 16, 20, 16, 16, 12, 8, 4, 4, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 5, 5, 10, 15, 25, 30, 40, 45, 55, 55, 60, 55, 55, 45, 40, 30, 25, 15, 10, 5, 5
Offset: 0

Views

Author

Peter Luschny, Jul 23 2016

Keywords

Comments

The definition of an orbital system is given in A232500. The number of orbitals over n sectors is counted by the swinging factorial A056040.
The break index of an orbital is the sum of the positions of the up steps that are immediately followed by a step which is not an up step. This statistic is an extension of the major index statistic given in A063746 which appears as the even numbered rows here. This reflects the fact that the swinging factorial can be seen as an extension of the central binomial. The break index is different from the major index of the swinging factorial (which is in A274888).

Examples

			The length of row n is floor(n^2/4 + 1). Triangle starts:
[n] [k=0,1,2,...] [row sum]
[0] [1] 1
[1] [1] 1
[2] [1, 1] 2
[3] [2, 2, 2] 6
[4] [1, 1, 2, 1, 1] 6
[5] [3, 3, 6, 6, 6, 3, 3] 30
[6] [1, 1, 2, 3, 3, 3, 3, 2, 1, 1] 20
[7] [4, 4, 8, 12, 16, 16, 20, 16, 16, 12, 8, 4, 4] 140
[8] [1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1] 70
[9] [5, 5, 10, 15, 25, 30, 40, 45, 55, 55, 60, 55, 55, 45, 40, 30,25,15,10,5,5] 630
T(5, 5) = 3 because the three orbitals [1, -1, -1, 1, 0], [1, -1, 0, 1, -1] and [1, 0, -1, 1, -1] have at position 1 and position 4 an up-step which is immediately followed by a step which is not an up-step.
		

Crossrefs

Cf. A056040 (row sum), A063746 (sub triangle), A274888 (q-swinging factorial).
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def orbital_break_index(n):
        S = [0]*(n^2//4 + 1)
        for u in unit_orbitals(n):
            L = [i+1 if u[i] == 1 and u[i+1] != 1 else 0 for i in (0..n-2)]
            #    i+1 because u is 0-based
            S[sum(L)] += 1
        return S
    for n in (0..9): print(orbital_break_index(n))
Previous Showing 11-18 of 18 results.