A234464
5*binomial(8*n+5, n)/(8*n+5).
Original entry on oeis.org
1, 5, 50, 630, 8925, 135751, 2165800, 35759900, 605902440, 10475490875, 184068392508, 3277575482090, 59012418601500, 1072549882307925, 19651558477204200, 362592313327737592, 6731396321743423000, 125645122201355505000, 2356570385677427920770
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[5*Binomial(8*n+5, n)/(8*n+5): n in [0..30]]; // Vincenzo Librandi, Dec 26 2012
-
Table[5 Binomial[8 n + 5, n]/(8 n + 5), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
-
a(n) = 5*binomial(8*n+5,n)/(8*n+5);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(8/5))^5+x*O(x^n)); polcoeff(B, n)}
A230390
5*binomial(8*n+10,n)/(4*n+5).
Original entry on oeis.org
1, 10, 125, 1760, 26650, 423752, 6978510, 117998400, 2036685765, 35738059500, 635627275767, 11433154297760, 207621482341000, 3801296492623560, 70092637731997100, 1300500163756675200, 24262157874835233000, 454847339247972377850, 8564398318045559667475
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[5*Binomial(8*n+10, n)/(4*n+5): n in [0..30]];
-
Table[5 Binomial[8 n + 10, n]/(4 n + 5), {n, 0, 30}]
-
a(n) = 5*binomial(8*n+10,n)/(4*n+5);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/5))^10+x*O(x^n)); polcoeff(B, n)}
A386396
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/7)} a(7*k) * a(n-1-7*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 17, 27, 38, 50, 63, 77, 92, 200, 325, 468, 630, 812, 1015, 1240, 2728, 4488, 6545, 8925, 11655, 14763, 18278, 40508, 67158, 98728, 135751, 178794, 228459, 285384, 635628, 1059380, 1566040, 2165800, 2869685, 3689595, 4638348
Offset: 0
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n\7, 8, n%7+1);
A386558
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = binomial((k+1)*n+k-1,n)/(n+1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 14, 0, 1, 5, 26, 91, 143, 42, 0, 1, 6, 40, 204, 612, 728, 132, 0, 1, 7, 57, 385, 1771, 4389, 3876, 429, 0, 1, 8, 77, 650, 4095, 16380, 32890, 21318, 1430, 0, 1, 9, 100, 1015, 8184, 46376, 158224, 254475, 120175, 4862, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 7, 15, 26, 40, 57, ...
0, 5, 30, 91, 204, 385, 650, ...
0, 14, 143, 612, 1771, 4095, 8184, ...
0, 42, 728, 4389, 16380, 46376, 109668, ...
0, 132, 3876, 32890, 158224, 548340, 1533939, ...
Columns k=0..10 give
A000007,
A000108,
A006013,
A006632,
A118971,
A130564(n+1),
A130565(n+1),
A234466,
A234513,
A234573,
A235340.
Comments