cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 65 results. Next

A235620 Primes whose base-9 representation also is the base-8 representation of a prime.

Original entry on oeis.org

2, 3, 5, 7, 19, 41, 59, 97, 109, 131, 151, 277, 331, 347, 457, 491, 541, 547, 577, 601, 739, 761, 811, 829, 977, 997, 1031, 1231, 1279, 1303, 1321, 1499, 1549, 1571, 1609, 1621, 1801, 1987, 2221, 2239, 2269, 2309, 2381, 2399, 2521, 2617, 2687, 2707, 2791, 2939, 2953, 3119
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			19 is a term: 19 = 21_9 and 21_8 = 17, also a prime.
79 is not a term: 79 = 87_9 and 87 is not a valid base-8 representation.
		

Crossrefs

Cf. A231480, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Mathematica
    b9b8pQ[n_]:=Module[{id=IntegerDigits[n,9]},Max[id]<8&&PrimeQ[FromDigits[ id,8]]]; Select[Prime[Range[500]],b9b8pQ] (* Harvey P. Dale, Mar 12 2018 *)
  • PARI
    is(p,b=8,c=9)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,3e3,is(p,9,8)&&print1(vector(#d=digits(p,8),i,9^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,8,9)
    
  • PARI
    isok(p) = isprime(p) && (q = digits(p, 9)) && (vecmax(q) < 8) && isprime(fromdigits(q, 8)); \\ Michel Marcus, Mar 12 2018

A235621 Primes whose base-9 representation also is the base-7 representation of a prime.

Original entry on oeis.org

2, 3, 5, 13, 23, 29, 37, 47, 59, 103, 109, 131, 167, 173, 181, 199, 211, 263, 283, 379, 419, 509, 541, 733, 787, 821, 859, 911, 919, 983, 1013, 1063, 1091, 1093, 1171, 1487, 1499, 1543, 1549, 1559, 1567, 1571, 1667, 1669, 1733, 1783, 1787, 1913, 1993, 2237, 2287, 2351, 2381, 2477, 2621
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			E.g., 13 = 14_9 and 14_7 = 11 are both prime.
		

Crossrefs

Cf. A231479, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • PARI
    is(p,b=7,c=9)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,3e3,is(p,9,7)&&print1(vector(#d=digits(p,7),i,9^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,7,9)

A235622 Primes whose base-8 representation also is the base-7 representation of a prime.

Original entry on oeis.org

2, 3, 5, 19, 53, 89, 109, 131, 257, 293, 307, 347, 349, 433, 523, 557, 683, 739, 811, 853, 881, 907, 937, 941, 1061, 1097, 1117, 1201, 1427, 1621, 1693, 1733, 1747, 1861, 1873, 1889, 1907, 2141, 2267, 2341, 2467, 2677, 2699, 2803, 2861, 2917, 2953, 3163, 3253, 3307, 3433
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			E.g., 19 = 23_8 and 23_7 = 17 are both prime.
		

Crossrefs

Cf. A235630, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Mathematica
    pb87Q[n_]:=Module[{idn8=IntegerDigits[n,8]},Max[idn8]<7&&PrimeQ[ FromDigits[ idn8,7]]]; Select[Prime[Range[500]],pb87Q] (* Harvey P. Dale, Dec 13 2016 *)
  • PARI
    is(p,b=7,c=8)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,3e3,is(p,8,7)&&print1(vector(#d=digits(p,7),i,8^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,7,8)

A235624 Primes whose base-4 representation is also the base-6 representation of a prime.

Original entry on oeis.org

2, 3, 5, 13, 17, 37, 61, 73, 109, 157, 173, 181, 229, 233, 241, 257, 317, 337, 349, 373, 397, 409, 541, 557, 569, 601, 613, 661, 761, 769, 797, 821, 857, 953, 1013, 1021, 1033, 1069, 1153, 1181, 1193, 1201, 1229, 1237, 1297, 1321, 1373, 1429, 1481, 1609, 1621, 1637, 1709, 1801, 1861, 1877, 1889, 1901, 1973
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			5 = 11_4 and 11_6 = 7 are both prime, so 5 is a term.
		

Crossrefs

Cf. A235616, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@ Range@ 500, PrimeQ@ FromDigits[ IntegerDigits[#, 4], 6] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=6,c=4)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A235625 Primes whose base-5 representation is also the base-6 representation of a prime.

Original entry on oeis.org

2, 3, 11, 31, 71, 131, 191, 211, 241, 251, 271, 331, 421, 431, 461, 491, 541, 601, 631, 811, 821, 911, 971, 1031, 1051, 1061, 1171, 1181, 1201, 1231, 1291, 1321, 1361, 1451, 1511, 1531, 1571, 1601, 1721, 1801, 1811, 1831, 1861, 1931, 2081, 2111, 2131, 2141, 2311, 2341, 2381, 2411, 2521, 2531, 2711, 2741, 2801
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			11 = 21_5 and 21_6 = 13 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235626, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@ Range@ 500, PrimeQ@ FromDigits[ IntegerDigits[#, 5], 6] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=6,c=5)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A235626 Primes whose base-6 representation also is the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 13, 43, 97, 223, 307, 337, 379, 433, 457, 547, 709, 727, 769, 811, 919, 1009, 1303, 1597, 1609, 1777, 1861, 1987, 2017, 2029, 2221, 2239, 2269, 2311, 2647, 2689, 2749, 2917, 3037, 3067, 3121, 3169, 3373, 3529, 3541, 3571, 3613, 3967, 4219, 4261, 4327, 4339
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			Both 13 = 21_6 and 21_5 = 11 are prime.
		

Crossrefs

Cf. A235625, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Maple
    P:= {seq(ithprime(i),i=1..10000)}:
    f:= proc(p) local i,L;
      L:= convert(p,base,5);
      add(L[i]*6^(i-1),i=1..nops(L))
    end proc:
    sort(convert(map(f,P) intersect P,list)); # Robert Israel, Jun 18 2019
  • Mathematica
    b65pQ[n_]:=Module[{idn6=IntegerDigits[n,6]},Max[idn6]<5&&PrimeQ[ FromDigits[ idn6,5]]]; Select[Prime[Range[600]],b65pQ] (* Harvey P. Dale, Oct 13 2020 *)
  • PARI
    is(p,b=5,c=6)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,3e3,is(p,6,5)&&print1(vector(#d=digits(p,5),i,6^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,4,6)

A235627 Primes whose base-7 representation also is the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 7, 17, 23, 31, 53, 71, 73, 79, 101, 109, 113, 127, 151, 157, 197, 199, 359, 401, 409, 449, 463, 521, 541, 557, 743, 863, 1033, 1039, 1103, 1151, 1193, 1229, 1451, 1487, 1499, 1543, 2423, 2521, 2549, 2621, 2753, 2857, 2909, 2957, 3089, 3257, 3313, 3511, 3529, 3593
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			Both 17 = 23_7 and 23_5 = 13 are prime.
		

Crossrefs

Cf. A235635, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • PARI
    is(p,b=5,c=7)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,3e3,is(p,7,5)&&print1(vector(#d=digits(p,5),i,7^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,5,7)

A235628 Primes whose base-8 representation also is the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 17, 19, 73, 89, 131, 163, 257, 521, 577, 739, 1097, 1171, 1283, 1601, 1747, 2081, 2083, 2137, 2267, 4177, 4289, 4363, 4643, 5273, 5387, 5651, 5779, 5849, 5851, 5923, 6211, 6299, 6337, 8353, 8713, 8803, 8929, 8969, 8971, 9377, 9419, 9473, 9491, 9811, 9883, 10009
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			Both 17 = 23_8 and 23_5 = 13 are prime.
		

Crossrefs

Cf. A235632, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • PARI
    is(p,b=5,c=8)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,3e3,is(p,8,5)&&print1(vector(#d=digits(p,5),i,8^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,5,8)

A235630 Primes whose base-7 representation is also the base-8 representation of a prime.

Original entry on oeis.org

2, 3, 5, 17, 47, 71, 89, 101, 197, 229, 241, 269, 271, 337, 353, 383, 479, 521, 577, 607, 631, 647, 673, 677, 719, 743, 761, 827, 997, 1097, 1153, 1181, 1193, 1279, 1289, 1303, 1319, 1447, 1543, 1601, 1697, 1811, 1823, 1907, 1951, 1993, 2017, 2131, 2203, 2243, 2339, 2357, 2383, 2549
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			17 = 23_7 and 23_8 = 19 are both prime, so 17 is a term.
		

Crossrefs

Cf. A235622, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@500, PrimeQ@ FromDigits[IntegerDigits[#, 7], 8] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=8,c=7)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A235631 Primes whose base-6 representation is also the base-8 representation of a prime.

Original entry on oeis.org

2, 3, 5, 11, 13, 23, 29, 31, 43, 61, 71, 79, 89, 107, 109, 113, 137, 139, 163, 173, 193, 223, 239, 251, 271, 281, 283, 313, 317, 347, 383, 431, 439, 461, 467, 491, 499, 541, 557, 593, 607, 641, 659, 661, 691, 701, 743, 761, 853, 863, 881, 919, 971, 997, 1013, 1031, 1051, 1061, 1063
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			11 = 15_6 and 15_8 = 13 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235638, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@500, PrimeQ@FromDigits[IntegerDigits[#, 6], 8] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=8,c=6)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.
Previous Showing 41-50 of 65 results. Next