A335724
a(n) is the number of smallest parts in the overpartitions of n.
Original entry on oeis.org
2, 6, 12, 26, 44, 84, 136, 230, 366, 580, 884, 1356, 2012, 2968, 4320, 6226, 8856, 12522, 17508, 24324, 33528, 45892, 62392, 84372, 113374, 151548, 201552, 266752, 351380, 460920, 601992, 783158, 1014984, 1310600, 1686408, 2162814, 2764748, 3523324, 4476720, 5671748
Offset: 1
There are 14 overpartitions of 4: [4], [4'], [3,1], [3,1'], [3',1], [3',1'], [2,2], [2',2], [2,1,1], [2,1',1], [2',1,1], [2',1',1], [1,1,1,1], [1',1,1,1], and so a(4) = 26.
- K. Bringmann, J. Lovejoy, and R. Osburn, Rank and crank moments for overpartitions, Journal of Number Theory, 129 (2009), 1758-1772.
- K. Bringmann, J. Lovejoy, and R. Osburn, Automorphic properties of generating functions for generalized rank moments and Durfee symbols, International Mathematics Research Notices, (2010), 238-260.
A335728
a(n) is the number of smallest parts in the overpartitions of n having even smallest part.
Original entry on oeis.org
0, 2, 0, 6, 4, 12, 12, 30, 36, 60, 80, 132, 180, 264, 360, 522, 712, 990, 1344, 1844, 2472, 3324, 4420, 5892, 7764, 10212, 13344, 17400, 22556, 29160, 37524, 48166, 61560, 78456, 99648, 126234, 159396, 200740, 252096, 315828
Offset: 1
There are 14 overpartitions of 4: [4], [4'], [3,1], [3,1'], [3',1], [3',1'], [2,2], [2',2], [2,1,1], [2,1',1], [2',1,1], [2',1',1], [1,1,1,1], [1',1,1,1], and so a(4) = 6.
- K. Bringmann, J. Lovejoy, and R. Osburn, Rank and crank moments for overpartitions, Journal of Number Theory, 129 (2009), 1758-1772.
- K. Bringmann, J. Lovejoy, and R. Osburn, Automorphic properties of generating functions for generalized rank moments and Durfee symbols, International Mathematics Research Notices, (2010), 238-260.
A335730
a(n) is the number of smallest parts in the overpartitions of n having odd smallest part.
Original entry on oeis.org
2, 4, 12, 20, 40, 72, 124, 200, 330, 520, 804, 1224, 1832, 2704, 3960, 5704, 8144, 11532, 16164, 22480, 31056, 42568, 57972, 78480, 105610, 141336, 188208, 249352, 328824, 431760, 564468, 734992, 953424, 1232144, 1586760, 2036580, 2605352, 3322584, 4224624, 5355920
Offset: 1
There are 14 overpartitions of 4: [4], [4'], [3,1], [3,1'], [3',1], [3',1'], [2,2], [2',2], [2,1,1], [2,1',1], [2',1,1], [2',1',1], [1,1,1,1], [1',1,1,1], and so a(4) = 20.
- S. Ahlgren, K. Bringmann, and J. Lovejoy, l-adic properties of smallest parts functions, Advances in Mathematics, 228 (2011), 629-645.
- K. Bringmann, J. Lovejoy, and R. Osburn, Rank and crank moments for overpartitions, Journal of Number Theory, 129 (2009), 1758-1772.
- K. Bringmann, J. Lovejoy, and R. Osburn, Automorphic properties of generating functions for generalized rank moments and Durfee symbols, International Mathematics Research Notices, (2010), 238-260.
A308654
The overpartition triangle: T(n,k) is the number of overpartitions of n with exactly k positive integer parts, 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 2, 2, 0, 2, 4, 2, 0, 2, 6, 4, 2, 0, 2, 8, 8, 4, 2, 0, 2, 10, 14, 8, 4, 2, 0, 2, 12, 20, 16, 8, 4, 2, 0, 2, 14, 28, 26, 16, 8, 4, 2, 0, 2, 16, 38, 40, 28, 16, 8, 4, 2, 0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2, 0, 2, 20, 60, 84, 72, 48, 28, 16, 8, 4, 2
Offset: 0
T(5,3) = 8 and counts the overpartitions 3,1,1; 3',1,1; 3,1',1; 3',1',1; 2,2,1; 2',2,1; 2,2,1' and 2',2,1'.
T(16,5) = 404 = T(11,5) + 2*( T(11,4) + T(11,3) + T(11,2) + T(11,1)) = 72 + 2*(84 + 60 + 20 + 2) = 404.
T(16, 5) = T(15,4) + T(11,4) + T(10,4) + T(6,4) + T(5,4) = 248 + 84 + 60 + 8 + 4 = 404.
T(9,1) + T(8,2) + T(7,3) + T(6,4) + T(6,5)= 2 + 14 + 20 + 8 + 2 = 46 =A300415(10).
Triangle: T(n,k) begins:
1;
0, 2;
0, 2, 2;
0, 2, 4, 2;
0, 2, 6, 4, 2;
0, 2, 8, 8, 4, 2;
0, 2, 10, 14, 8, 4, 2;
0, 2, 12, 20, 16, 8, 4, 2;
0, 2, 14, 28, 26, 16, 8, 4, 2;
0, 2, 16, 38, 40, 28, 16, 8, 4, 2;
0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2;
...
Main diagonal T(n,n) gives
A040000.
-
b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
expand(`if`(j>0, 2*x^j, 1)*b(n-i*j, i-1)), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..14); # Alois P. Heinz, Jun 15 2019
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Expand[If[j > 0, 2*x^j, 1]*b[n - i*j, i - 1]], {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, n]];
T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Dec 10 2019, after Alois P. Heinz *)
Comments