cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A237618 a(n) = n*(n + 1)*(19*n - 16)/6.

Original entry on oeis.org

0, 1, 22, 82, 200, 395, 686, 1092, 1632, 2325, 3190, 4246, 5512, 7007, 8750, 10760, 13056, 15657, 18582, 21850, 25480, 29491, 33902, 38732, 44000, 49725, 55926, 62622, 69832, 77575, 85870, 94736, 104192, 114257, 124950, 136290, 148296, 160987, 174382
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2014

Keywords

Comments

Also 21-gonal (or icosihenagonal) pyramidal numbers.

Examples

			After 0, the sequence is provided by the row sums of the triangle:
   1;
   2,  20;
   3,  40,  39;
   4,  60,  78,  58;
   5,  80, 117, 116, 77;
   6, 100, 156, 174, 154, 96;
   7, 120, 195, 232, 231, 192, 115;
   8, 140, 234, 290, 308, 288, 230, 134;
   9, 160, 273, 348, 385, 384, 345, 268, 153;
  10, 180, 312, 406, 462, 480, 460, 402, 306, 172; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 19*r-18 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (nineteenth row of the table).

Crossrefs

Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(19*n-16)/6: n in [0..40]];
    
  • Magma
    I:=[0,1,22,82]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    Table[n(n+1)(19n-16)/6, {n, 0, 40}]
    CoefficientList[Series[x(1+18x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • SageMath
    b=binomial; [b(n+2,3) +18*b(n+1,3) for n in (0..50)] # G. C. Greubel, May 27 2022

Formula

G.f.: x*(1 + 18*x) / (1 - x)^4.
a(n) = (1/2)*( n*A226490(n) - Sum_{j=0..n-1} A226490(j) ).
a(n) = Sum_{i=0..n-1} (n-i)*(19*i+1), for n>0; see the generalization in A237616 (Formula field).
From G. C. Greubel, May 27 2022: (Start)
a(n) = binomial(n+2, 3) + 18*binomial(n+1, 3).
E.g.f.: (1/6)*x*(6 + 60*x + 19*x^2)*exp(x). (End)

A256646 26-gonal pyramidal numbers: a(n) = n*(n+1)*(8*n-7)/2.

Original entry on oeis.org

0, 1, 27, 102, 250, 495, 861, 1372, 2052, 2925, 4015, 5346, 6942, 8827, 11025, 13560, 16456, 19737, 23427, 27550, 32130, 37191, 42757, 48852, 55500, 62725, 70551, 79002, 88102, 97875, 108345, 119536, 131472, 144177, 157675, 171990, 187146, 203167, 220077
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (24th row of the table).

Crossrefs

Partial sums of A255185.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(8*n-7)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
    
  • Mathematica
    Table[n (n + 1) (8 n - 7)/2, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 27, 102}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
  • SageMath
    [(8*n-7)*binomial(n+1,2) for n in range(51)] # G. C. Greubel, Jul 12 2024

Formula

G.f.: x*(1 + 23*x)/(1 - x)^4.
a(n) = A000292(n) + 23*A000292(n-1).
a(n) = n*A051866(n) - Sum_{i=0..n-1} A051866(i). - Bruno Berselli, Apr 09 2015
Sum_{n>=1} 1/a(n) = 2*(4*(sqrt(2)+1)*Pi - 4*(sqrt(2)-8)*log(2) + 8*sqrt(2)*log(sqrt(2)+2) - 7)/105. - Amiram Eldar, Jan 10 2022
E.g.f.: (1/2)*x*(2 + 25*x + 8*x^2)*exp(x). - G. C. Greubel, Jul 12 2024

A256647 27-gonal pyramidal numbers: a(n) = n*(n+1)*(25*n-22)/6.

Original entry on oeis.org

0, 1, 28, 106, 260, 515, 896, 1428, 2136, 3045, 4180, 5566, 7228, 9191, 11480, 14120, 17136, 20553, 24396, 28690, 33460, 38731, 44528, 50876, 57800, 65325, 73476, 82278, 91756, 101935, 112840, 124496, 136928, 150161, 164220, 179130, 194916, 211603, 229216
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (25th row of the table).

Crossrefs

Partial sums of A255186.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(25*n-22)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
  • Mathematica
    Table[n (n + 1) (25 n - 22)/6, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 28, 106}, 40] (* Vincenzo Librandi, Apr 08 2015 *)

Formula

G.f.: x*(1 + 24*x)/(1 - x)^4.
a(n) = A000292(n) + 24*A000292(n-1).
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(6 + 78*x + 25*x^2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A256648 28-gonal pyramidal numbers: a(n) = n*(n+1)*(26*n-23)/6.

Original entry on oeis.org

0, 1, 29, 110, 270, 535, 931, 1484, 2220, 3165, 4345, 5786, 7514, 9555, 11935, 14680, 17816, 21369, 25365, 29830, 34790, 40271, 46299, 52900, 60100, 67925, 76401, 85554, 95410, 105995, 117335, 129456, 142384, 156145, 170765, 186270, 202686, 220039, 238355
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.
This sequence is related to A051867 by a(n) = n*A051867(n) - Sum_{i=0..n-1} A051867(i). - Bruno Berselli, Apr 09 2015

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (26th row of the table).

Crossrefs

Partial sums of A161935.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(26*n-23)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
  • Mathematica
    Table[n (n + 1)(26 n - 23)/6, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 29, 110}, 40] (* Vincenzo Librandi, Apr 08 2015 *)

Formula

G.f.: x*(1 + 25*x)/(1 - x)^4.
a(n) = A000292(n) + 25*A000292(n-1).
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(6 + 81*x + 26*x^2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A256649 29-gonal pyramidal numbers: a(n) = n*(n+1)*(9*n-8)/2.

Original entry on oeis.org

0, 1, 30, 114, 280, 555, 966, 1540, 2304, 3285, 4510, 6006, 7800, 9919, 12390, 15240, 18496, 22185, 26334, 30970, 36120, 41811, 48070, 54924, 62400, 70525, 79326, 88830, 99064, 110055, 121830, 134416, 147840, 162129, 177310, 193410, 210456, 228475, 247494
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (27th row of the table).

Crossrefs

Partial sums of A255187.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(9*n-8)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
  • Mathematica
    Table[n (n + 1)(9 n - 8)/2, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 30, 114}, 40] (* Vincenzo Librandi, Apr 08 2015 *)

Formula

G.f.: x*(1 + 26*x)/(1 - x)^4.
a(n) = A000292(n) + 26*A000292(n-1).
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(2 + 28*x + 9*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A256650 30-gonal pyramidal numbers: a(n) = n*(n+1)*(28*n-25)/6.

Original entry on oeis.org

0, 1, 31, 118, 290, 575, 1001, 1596, 2388, 3405, 4675, 6226, 8086, 10283, 12845, 15800, 19176, 23001, 27303, 32110, 37450, 43351, 49841, 56948, 64700, 73125, 82251, 92106, 102718, 114115, 126325, 139376, 153296, 168113, 183855, 200550, 218226, 236911, 256633
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.
This sequence is related to A051868 by a(n) = n*A051868(n) - Sum_{i=0..n-1} A051868(i). [Bruno Berselli, Apr 09 2015]

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (28th row of the table).

Crossrefs

Partial sums of A254474.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(28*n-25)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
  • Mathematica
    Table[n (n + 1) (28 n - 25)/6, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 31, 118}, 40] (* Vincenzo Librandi, Apr 08 2015 *)

Formula

G.f.: x*(1 + 27*x)/(1 - x)^4.
a(n) = A000292(n) + 27*A000292(n-1).
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(6 + 87*x + 28*x^2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A256718 a(n) = n*(n+1)*(7*n-6)/2.

Original entry on oeis.org

0, 1, 24, 90, 220, 435, 756, 1204, 1800, 2565, 3520, 4686, 6084, 7735, 9660, 11880, 14416, 17289, 20520, 24130, 28140, 32571, 37444, 42780, 48600, 54925, 61776, 69174, 77140, 85695, 94860, 104656, 115104, 126225, 138040, 150570, 163836, 177859, 192660
Offset: 0

Views

Author

Bruno Berselli, Apr 09 2015

Keywords

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (21st row of the table).

Crossrefs

Partial sums of A051875.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(7*n-6)/2: n in [0..40]];
  • Mathematica
    Table[n (n + 1) (7 n - 6)/2, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{0,1,24,90},40] (* Harvey P. Dale, Jan 15 2024 *)
  • PARI
    vector(40, n, n--; n*(n+1)*(7*n-6)/2)
    
  • Sage
    [n*(n+1)*(7*n-6)/2 for n in (0..40)]
    

Formula

G.f.: x*(1 + 20*x)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with n>3, a(0)=0, a(1)=1, a(2)=24, a(3)=90.
a(n) = Sum_{i=0..n-1} (n-i)*(21*i+1) for n>0.
Previous Showing 21-27 of 27 results.