A237618
a(n) = n*(n + 1)*(19*n - 16)/6.
Original entry on oeis.org
0, 1, 22, 82, 200, 395, 686, 1092, 1632, 2325, 3190, 4246, 5512, 7007, 8750, 10760, 13056, 15657, 18582, 21850, 25480, 29491, 33902, 38732, 44000, 49725, 55926, 62622, 69832, 77575, 85870, 94736, 104192, 114257, 124950, 136290, 148296, 160987, 174382
Offset: 0
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 20;
3, 40, 39;
4, 60, 78, 58;
5, 80, 117, 116, 77;
6, 100, 156, 174, 154, 96;
7, 120, 195, 232, 231, 192, 115;
8, 140, 234, 290, 308, 288, 230, 134;
9, 160, 273, 348, 385, 384, 345, 268, 153;
10, 180, 312, 406, 462, 480, 460, 402, 306, 172; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 19*r-18 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (nineteenth row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(19*n-16)/6: n in [0..40]];
-
I:=[0,1,22,82]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
Table[n(n+1)(19n-16)/6, {n, 0, 40}]
CoefficientList[Series[x(1+18x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
-
b=binomial; [b(n+2,3) +18*b(n+1,3) for n in (0..50)] # G. C. Greubel, May 27 2022
A256646
26-gonal pyramidal numbers: a(n) = n*(n+1)*(8*n-7)/2.
Original entry on oeis.org
0, 1, 27, 102, 250, 495, 861, 1372, 2052, 2925, 4015, 5346, 6942, 8827, 11025, 13560, 16456, 19737, 23427, 27550, 32130, 37191, 42757, 48852, 55500, 62725, 70551, 79002, 88102, 97875, 108345, 119536, 131472, 144177, 157675, 171990, 187146, 203167, 220077
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (24th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(8*n-7)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1) (8 n - 7)/2, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 27, 102}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
-
[(8*n-7)*binomial(n+1,2) for n in range(51)] # G. C. Greubel, Jul 12 2024
A256647
27-gonal pyramidal numbers: a(n) = n*(n+1)*(25*n-22)/6.
Original entry on oeis.org
0, 1, 28, 106, 260, 515, 896, 1428, 2136, 3045, 4180, 5566, 7228, 9191, 11480, 14120, 17136, 20553, 24396, 28690, 33460, 38731, 44528, 50876, 57800, 65325, 73476, 82278, 91756, 101935, 112840, 124496, 136928, 150161, 164220, 179130, 194916, 211603, 229216
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (25th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(25*n-22)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1) (25 n - 22)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 28, 106}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
A256648
28-gonal pyramidal numbers: a(n) = n*(n+1)*(26*n-23)/6.
Original entry on oeis.org
0, 1, 29, 110, 270, 535, 931, 1484, 2220, 3165, 4345, 5786, 7514, 9555, 11935, 14680, 17816, 21369, 25365, 29830, 34790, 40271, 46299, 52900, 60100, 67925, 76401, 85554, 95410, 105995, 117335, 129456, 142384, 156145, 170765, 186270, 202686, 220039, 238355
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (26th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(26*n-23)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1)(26 n - 23)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 29, 110}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
A256649
29-gonal pyramidal numbers: a(n) = n*(n+1)*(9*n-8)/2.
Original entry on oeis.org
0, 1, 30, 114, 280, 555, 966, 1540, 2304, 3285, 4510, 6006, 7800, 9919, 12390, 15240, 18496, 22185, 26334, 30970, 36120, 41811, 48070, 54924, 62400, 70525, 79326, 88830, 99064, 110055, 121830, 134416, 147840, 162129, 177310, 193410, 210456, 228475, 247494
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (27th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(9*n-8)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1)(9 n - 8)/2, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 30, 114}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
A256650
30-gonal pyramidal numbers: a(n) = n*(n+1)*(28*n-25)/6.
Original entry on oeis.org
0, 1, 31, 118, 290, 575, 1001, 1596, 2388, 3405, 4675, 6226, 8086, 10283, 12845, 15800, 19176, 23001, 27303, 32110, 37450, 43351, 49841, 56948, 64700, 73125, 82251, 92106, 102718, 114115, 126325, 139376, 153296, 168113, 183855, 200550, 218226, 236911, 256633
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (28th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(28*n-25)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1) (28 n - 25)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 31, 118}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
A256718
a(n) = n*(n+1)*(7*n-6)/2.
Original entry on oeis.org
0, 1, 24, 90, 220, 435, 756, 1204, 1800, 2565, 3520, 4686, 6084, 7735, 9660, 11880, 14416, 17289, 20520, 24130, 28140, 32571, 37444, 42780, 48600, 54925, 61776, 69174, 77140, 85695, 94860, 104656, 115104, 126225, 138040, 150570, 163836, 177859, 192660
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (21st row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(7*n-6)/2: n in [0..40]];
-
Table[n (n + 1) (7 n - 6)/2, {n, 0, 40}]
LinearRecurrence[{4,-6,4,-1},{0,1,24,90},40] (* Harvey P. Dale, Jan 15 2024 *)
-
vector(40, n, n--; n*(n+1)*(7*n-6)/2)
-
[n*(n+1)*(7*n-6)/2 for n in (0..40)]
Comments