cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A374520 Numbers k such that the leaders of maximal anti-runs in the k-th composition in standard order (A066099) are not identical.

Original entry on oeis.org

11, 19, 23, 26, 35, 39, 43, 46, 47, 53, 58, 67, 71, 74, 75, 78, 79, 83, 87, 91, 92, 93, 94, 95, 100, 106, 107, 117, 122, 131, 135, 138, 139, 142, 143, 147, 149, 151, 154, 155, 156, 157, 158, 159, 163, 164, 167, 171, 174, 175, 179, 183, 184, 185, 186, 187, 188
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with corresponding compositions begins:
  11: (2,1,1)
  19: (3,1,1)
  23: (2,1,1,1)
  26: (1,2,2)
  35: (4,1,1)
  39: (3,1,1,1)
  43: (2,2,1,1)
  46: (2,1,1,2)
  47: (2,1,1,1,1)
  53: (1,2,2,1)
  58: (1,1,2,2)
  67: (5,1,1)
  71: (4,1,1,1)
  74: (3,2,2)
  75: (3,2,1,1)
  78: (3,1,1,2)
  79: (3,1,1,1,1)
  83: (2,3,1,1)
  87: (2,2,1,1,1)
  91: (2,1,2,1,1)
		

Crossrefs

For leaders of maximal constant runs we have the complement of A272919.
Positions of non-constant rows in A374515.
The complement is A374519, counted by A374517.
For distinct instead of identical leaders we have A374639, counted by A374678, complement A374638, counted by A374518.
Compositions of this type are counted by A374640.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!SameQ@@First/@Split[stc[#],UnsameQ]&]

A374516 Sum of leaders of maximal anti-runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 1, 3, 4, 3, 4, 3, 1, 1, 2, 4, 5, 4, 3, 4, 2, 4, 2, 4, 1, 1, 3, 2, 2, 2, 3, 5, 6, 5, 4, 5, 6, 3, 3, 5, 2, 2, 6, 5, 2, 2, 3, 5, 1, 1, 1, 2, 1, 3, 1, 3, 2, 2, 4, 3, 3, 3, 4, 6, 7, 6, 5, 6, 4, 4, 4, 6, 3, 6, 5, 4, 3, 3, 4, 6, 2, 2, 2, 3, 4, 6, 4
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 1234567th composition in standard order is (3,2,1,2,2,1,2,5,1,1,1), with maximal anti-runs ((3,2,1,2),(2,1,2,5,1),(1),(1)), so a(1234567) is 3 + 2 + 1 + 1 = 7.
		

Crossrefs

For length instead of sum we have A333381.
Row-sums of A374515.
Other types of runs (instead of anti-):
- For identical runs we have A373953, row-sums of A374251.
- For weakly increasing runs we have A374630, row-sums of A374629.
- For strictly increasing runs we have A374684, row-sums of A374683.
- For weakly decreasing runs we have A374741, row-sums of A374740.
- For strictly decreasing runs we have A374758, row-sums of A374757.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],UnsameQ]],{n,0,100}]

A238571 Number of partitions of n avoiding any 3-term arithmetic progression.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 8, 12, 12, 19, 23, 27, 34, 43, 49, 62, 74, 88, 104, 127, 145, 176, 199, 239, 272, 324, 378, 430, 490, 583, 654, 750, 876, 988, 1112, 1291, 1441, 1642, 1877, 2121, 2358, 2682, 2977, 3365, 3830, 4237, 4734, 5357, 5868, 6590, 7398, 8182, 9049
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 28 2014

Keywords

Examples

			a(3) = 2: [2,1], [3].
a(4) = 4: [2,1,1], [2,2], [3,1], [4].
a(5) = 5: [2,2,1], [3,1,1], [3,2], [4,1], [5].
a(6) = 6: [2,2,1,1], [3,3], [4,1,1], [4,2], [5,1], [6].
a(7) = 8: [3,2,2], [3,3,1], [4,2,1], [4,3], [5,1,1], [5,2], [6,1], [7].
a(8) = 12: [3,3,1,1], [3,3,2], [4,2,1,1], [4,2,2], [4,3,1], [4,4], [5,2,1], [5,3], [6,1,1], [6,2], [7,1], [8].
		

Crossrefs

Cf. A003407 (the same for permutations).
Cf. A178932 (the same for strict partitions).
Cf. A238569 (the same for compositions).
Cf. A238433 (partitions avoiding equidistant 3-term arithmetic progressions).
Cf. A238424 (partitions avoiding three consecutive parts in arithmetic progression).
Cf. A238687.

Programs

  • Mathematica
    a[n_] := a[n] = Count[IntegerPartitions[n], P_ /; {} == SequencePosition[P, {_, i_, _, j_, _, k_, _} /; j - i == k - j, 1]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 29 2021 *)

A238687 Number of partitions p of n such that no three points (i,p_i), (j,p_j), (k,p_k) are collinear, where p_i denotes the i-th part.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 8, 13, 10, 18, 21, 27, 29, 41, 41, 62, 65, 77, 91, 114, 127, 151, 173, 213, 232, 279, 322, 372, 410, 491, 518, 630, 724, 814, 894, 1057, 1141, 1326, 1502, 1681, 1839, 2146, 2324, 2636, 2966, 3272, 3607, 4173, 4422, 5035, 5616, 6195, 6703
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 02 2014

Keywords

Examples

			There are a(10) = 18 such partitions of 10: [6,2,1,1], [5,2,2,1], [4,4,1,1], [3,3,2,2], [8,1,1], [7,2,1], [6,3,1], [6,2,2], [5,4,1], [5,3,2], [4,4,2], [4,3,3], [9,1], [8,2], [7,3], [6,4], [5,5], [10].
		

Crossrefs

Cf. A238686 (the same for compositions).

Programs

  • Maple
    b:= proc(n, i, l) local j, k, m; m:= nops(l);
          for j to m-2 do for k from j+1 to m-1 do
            if (l[m]-l[k])*(k-j)=(l[k]-l[j])*(m-k)
              then return 0 fi od od;
         `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, l)+
         `if`(i>n, 0, b(n-i, i, [l[], i]))))
        end:
    a:= n-> b(n, n, []):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_, l_] := Module[{j, k, m = Length[l]}, For[j = 1, j <= m - 2, j++, For[k = j+1, k <= m-1, k++, If[(l[[m]] - l[[k]])*(k - j) == (l[[k]] - l[[j]])*(m - k), Return[0]]]]; If[n == 0, 1, If[i < 1, 0, b[n, i - 1, l] + If[i > n, 0, b[n - i, i, Append[l, i]]]]]];
    a[n_] := b[n, n, {}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 21 2018, translated from Maple *)

A375140 Number of integer compositions of n whose leaders of weakly increasing runs are not strictly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 3, 10, 26, 65, 151, 343, 750, 1614, 3410, 7123, 14724, 30220, 61639, 125166, 253233, 510936, 1028659, 2067620, 4150699, 8324552, 16683501, 33417933, 66910805, 133931495, 268023257, 536279457, 1072895973, 2146277961, 4293254010, 8587507415
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also the number of integer compositions of n matching the dashed patterns 1-32 or 1-21.

Examples

			The a(1) = 0 through a(6) = 10 compositions:
     .  .  .  (121)  (131)   (132)
                     (1121)  (141)
                     (1211)  (1131)
                             (1212)
                             (1221)
                             (1311)
                             (2121)
                             (11121)
                             (11211)
                             (12111)
		

Crossrefs

For leaders of identical runs we have A056823.
The complement is counted by A188920.
Leaders of weakly increasing runs are rows of A374629, sum A374630.
For weakly decreasing leaders we have A374636, ranks A375137 or A375138.
For leaders of weakly decreasing runs we have the complement of A374746.
Compositions of this type are ranked by A375295, reverse A375296.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A374637 counts compositions by sum of leaders of weakly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!Greater@@First/@Split[#,LessEqual]&]],{n,15}]
    - or -
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,_,z_,y_,_}/;x<=y
    				

Formula

a(n) = 2^(n-1) - A188920(n).

A238433 Number of partitions of n avoiding equidistant 3-term arithmetic progressions.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 8, 13, 12, 19, 23, 29, 35, 45, 52, 68, 80, 98, 111, 141, 163, 198, 230, 283, 320, 376, 443, 517, 585, 719, 799, 932, 1085, 1254, 1417, 1668, 1861, 2138, 2449, 2804, 3166, 3666, 4083, 4662, 5277, 5960, 6676, 7651, 8494, 9635, 10803, 12157
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 01 2014

Keywords

Examples

			The a(8) = 13 such partitions are:
01:   [ 1 1 2 4 ]
02:   [ 1 1 3 3 ]
03:   [ 1 1 6 ]
04:   [ 1 2 2 3 ]
05:   [ 1 2 5 ]
06:   [ 1 3 4 ]
07:   [ 1 7 ]
08:   [ 2 2 4 ]
09:   [ 2 3 3 ]
10:   [ 2 6 ]
11:   [ 3 5 ]
12:   [ 4 4 ]
13:   [ 8 ]
Note that the fourth partition has the arithmetic progression 1,2,3, but not in equidistant positions.
		

Crossrefs

Cf. A238432 (same for compositions).
Cf. A238571 (partitions avoiding any 3-term arithmetic progression).
Cf. A238424 (partitions avoiding three consecutive parts in arithmetic progression).
Cf. A238687.

Programs

  • Maple
    b:= proc(n, i, l) local j;
          for j from 2 to iquo(nops(l)+1, 2) do
          if l[1]-l[j]=l[j]-l[2*j-1] then return 0 fi od;
         `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, l)+
         `if`(i>n, 0, b(n-i, i, [i,l[]]))))
        end:
    a:= n-> b(n, n, []):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_, l_] := b[n, i, l] = Module[{j}, For[ j = 2 , j <= Quotient[ Length[l] + 1, 2] , j++, If[ l[[1]] - l[[j]] == l[[j]] - l[[2*j - 1]] , Return[0]]]; If[n == 0, 1, If[i < 1, 0, b[n, i - 1, l] + If[i > n, 0, b[n - i, i, Prepend[l, i]]]]]];
    a[n_] := b[n, n, {}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 21 2018, translated from Maple *)

A332668 Number of strict integer partitions of n without three consecutive parts in arithmetic progression.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 11, 15, 20, 19, 26, 31, 34, 41, 50, 53, 67, 78, 84, 99, 120, 130, 154, 177, 193, 226, 262, 291, 332, 375, 419, 479, 543, 608, 676, 765, 859, 961, 1075, 1202, 1336, 1495, 1672, 1854, 2050, 2301, 2536, 2814, 3142, 3448, 3809
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2020

Keywords

Comments

Also the number of strict integer partitions of n whose first differences are an anti-run, meaning there are no adjacent equal differences.

Examples

			The a(1) = 1 through a(10) = 9 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)   (64)
                        (41)  (51)  (52)   (62)   (63)   (73)
                                    (61)   (71)   (72)   (82)
                                    (421)  (431)  (81)   (91)
                                           (521)  (621)  (532)
                                                         (541)
                                                         (631)
                                                         (721)
		

Crossrefs

Anti-run compositions are counted by A003242.
Normal anti-runs of length n + 1 are counted by A005649.
Strict partitions with equal differences are A049980.
Partitions with equal differences are A049988.
The non-strict version is A238424.
The version for permutations is A295370.
Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MatchQ[Differences[#],{_,x_,x_,_}]&]],{n,0,30}]

A374699 Number of integer compositions of n whose leaders of maximal anti-runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 5, 14, 34, 78, 180, 407, 907, 2000, 4364, 9448, 20323, 43448, 92400, 195604, 412355, 866085, 1813035, 3783895, 7875552
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 0 through a(8) = 14 compositions:
  .  .  .  .  .  (122)  (1122)  (133)    (233)
                        (1221)  (1222)   (1133)
                                (11122)  (1223)
                                (11221)  (1322)
                                (12211)  (1331)
                                         (11222)
                                         (12122)
                                         (12212)
                                         (12221)
                                         (21122)
                                         (111122)
                                         (111221)
                                         (112211)
                                         (122111)
		

Crossrefs

The complement is counted by A374682.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A056823.
- For leaders of weakly increasing runs we have A374636, complement A189076?
- For leaders of strictly increasing runs: A375135, complement A374697.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374640, ranks A374520, complement A374517, ranks A374519.
- For distinct leaders we have A374678, ranks A374639, complement A374518, ranks A374638.
- For weakly increasing leaders we have complement A374681.
- For strictly increasing leaders we have complement complement A374679.
- For strictly decreasing leaders we have complement A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.
A333381 counts maximal anti-runs in standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A333195 Numbers with three consecutive prime indices in arithmetic progression.

Original entry on oeis.org

8, 16, 24, 27, 30, 32, 40, 48, 54, 56, 60, 64, 72, 80, 81, 88, 96, 104, 105, 108, 110, 112, 120, 125, 128, 135, 136, 144, 150, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 210, 216, 220, 224, 232, 238, 240, 243, 248, 250, 256, 264, 270, 272, 273, 280, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2020

Keywords

Comments

Also numbers whose first differences of prime indices do not form an anti-run, meaning there are adjacent equal differences.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    8: {1,1,1}          105: {2,3,4}
   16: {1,1,1,1}        108: {1,1,2,2,2}
   24: {1,1,1,2}        110: {1,3,5}
   27: {2,2,2}          112: {1,1,1,1,4}
   30: {1,2,3}          120: {1,1,1,2,3}
   32: {1,1,1,1,1}      125: {3,3,3}
   40: {1,1,1,3}        128: {1,1,1,1,1,1,1}
   48: {1,1,1,1,2}      135: {2,2,2,3}
   54: {1,2,2,2}        136: {1,1,1,7}
   56: {1,1,1,4}        144: {1,1,1,1,2,2}
   60: {1,1,2,3}        150: {1,2,3,3}
   64: {1,1,1,1,1,1}    152: {1,1,1,8}
   72: {1,1,1,2,2}      160: {1,1,1,1,1,3}
   80: {1,1,1,1,3}      162: {1,2,2,2,2}
   81: {2,2,2,2}        168: {1,1,1,2,4}
   88: {1,1,1,5}        176: {1,1,1,1,5}
   96: {1,1,1,1,1,2}    184: {1,1,1,9}
  104: {1,1,1,6}        189: {2,2,2,4}
		

Crossrefs

Anti-run compositions are counted by A003242.
Normal anti-runs of length n + 1 are counted by A005649.
Strict partitions with equal differences are A049980.
Partitions with equal differences are A049988.
These are the Heinz numbers of the partitions *not* counted by A238424.
Permutations avoiding triples in arithmetic progression are A295370.
Strict partitions avoiding triples in arithmetic progression are A332668.
Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MatchQ[Differences[primeMS[#]],{_,x_,x_,_}]&]

A333631 Number of permutations of {1..n} with three consecutive terms in arithmetic progression.

Original entry on oeis.org

0, 0, 0, 2, 6, 40, 238, 1760, 14076, 131732, 1308670, 14678452, 176166906, 2317481348, 32416648496, 490915956484, 7846449011500, 134291298372632, 2416652824505150, 46141903780094080, 922528719841017424, 19456439433050482412, 427837767407051523776, 9873256397944571377332
Offset: 0

Views

Author

Gus Wiseman, Mar 31 2020

Keywords

Comments

Also permutations whose second differences have at least one zero.

Examples

			The a(3) = 2 and a(4) = 6 permutations:
  (1,2,3)  (1,2,3,4)
  (3,2,1)  (1,4,3,2)
           (2,3,4,1)
           (3,2,1,4)
           (4,1,2,3)
           (4,3,2,1)
		

Crossrefs

The complement is counted by A295370.
The version for prime indices is A333195.
Strict partitions with equal differences are A049980.
Partitions with equal differences are A049988.
Compositions without triples in arithmetic progression are A238423.
Partitions without triples in arithmetic progression are A238424.
Strict partitions without triples in arithmetic progression are A332668.

Programs

  • Mathematica
    Table[Select[Permutations[Range[n]],MatchQ[Differences[#],{_,x_,x_,_}]&]//Length,{n,0,8}]

Formula

a(n) = n! - A295370(n).

Extensions

a(11)-a(21) (using A295370) from Giovanni Resta, Apr 07 2020
a(22)-a(23) (using A295370) from Alois P. Heinz, Jan 27 2024
Previous Showing 21-30 of 30 results.