cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A096748 Expansion of (1+x)^2/(1-x^2-x^4).

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 34, 42, 55, 68, 89, 110, 144, 178, 233, 288, 377, 466, 610, 754, 987, 1220, 1597, 1974, 2584, 3194, 4181, 5168, 6765, 8362, 10946, 13530, 17711, 21892, 28657, 35422, 46368, 57314, 75025, 92736, 121393, 150050
Offset: 0

Views

Author

Paul Barry, Jul 07 2004

Keywords

Comments

The ratio a(n+1) / a(n) increasingly approximates two constants connected to the golden ratio phi = (1 + sqrt(5))/2: (phi+1)/2 = 1.30901699... = A239798 and (phi-1)*2 = 1.23606797... = A134972, according to whether n is odd or even. - Davide Rotondo, Jul 31 2020

Crossrefs

Cf. A134972 and A239798 (limiting ratios for a(n+1)/a(n)).

Programs

  • Mathematica
    CoefficientList[Series[(1+x)^2/(1-x^2-x^4),{x,0,50}],x] (* or *) LinearRecurrence[{0,1,0,1},{1,2,2,2},50] (* Harvey P. Dale, Jan 29 2012 *)

Formula

a(n) = a(n-2) + a(n-4).
a(n) = 2*F((n+1)/2)*(1-(-1)^n)/2 + F((n+4)/2)*(1+(-1)^n)/2.
a(2*n) = A000045(n+2); a(2*n+1) = 2*A000045(n+1).
a(n) = Sum_{k=0..n} binomial(floor((n-k)/2), floor(k/2)). - Paul Barry, Jul 24 2004
a(n) = A079977(n) + A079977(n-2) + 2*A079977(n-1). - R. J. Mathar, Jul 15 2013

A363438 Decimal expansion of the volume of the regular dodecahedron inscribed in the unit-radius sphere.

Original entry on oeis.org

2, 7, 8, 5, 1, 6, 3, 8, 6, 3, 1, 2, 2, 6, 2, 2, 9, 6, 7, 2, 9, 2, 5, 5, 4, 9, 1, 2, 7, 3, 5, 9, 4, 6, 9, 8, 7, 8, 9, 9, 3, 2, 1, 7, 7, 2, 0, 7, 6, 3, 3, 1, 9, 9, 2, 6, 3, 7, 0, 2, 4, 1, 4, 7, 4, 1, 6, 2, 5, 5, 1, 5, 0, 3, 2, 9, 1, 0, 6, 4, 9, 3, 0, 9, 4, 4, 4, 8, 5, 1, 3, 4, 7, 6, 6, 4, 8, 0, 8, 8, 0, 6, 5, 4, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 02 2023

Keywords

Examples

			2.78516386312262296729255491273594698789932177207633...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A339259 (regular icosahedron), A363437 (regular tetrahedron).
Cf. A001622.
Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798, A341906.

Programs

  • Mathematica
    RealDigits[(2*(5 + Sqrt[5]))/(3*Sqrt[3]), 10, 120][[1]]
  • PARI
    2*sqrt(5+sqrt(5))/sqrt(27) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals 2*sqrt(5+sqrt(5))/(3*sqrt(3)).
Equals 4*(phi+2)/(3*sqrt(3)), where phi is the golden ratio (A001622).
Equals A102769 / A179296 ^ 3.

A094884 Decimal expansion of phi/sqrt(2), where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 1, 4, 4, 1, 2, 2, 8, 0, 5, 6, 3, 5, 3, 6, 8, 5, 9, 5, 2, 0, 0, 1, 4, 5, 5, 6, 7, 1, 6, 0, 6, 0, 4, 1, 5, 3, 0, 7, 2, 3, 0, 6, 7, 5, 3, 6, 7, 5, 5, 4, 1, 2, 2, 5, 0, 0, 8, 5, 4, 6, 1, 4, 7, 6, 9, 5, 8, 3, 1, 7, 2, 9, 2, 7, 5, 3, 3, 6, 3, 1, 5, 0, 4, 8, 6, 5, 8, 9, 1, 0, 6, 7, 6, 7, 3, 5, 4, 6
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2004

Keywords

Comments

An algebraic number with minimal polynomial 4*x^4 - 6*x^2 + 1. - Charles R Greathouse IV, Mar 25 2014

Examples

			1.144122805635368595200145567160604153072306753675541225...
		

Crossrefs

Cf. A001622 (phi), A002193 (sqrt(2)), A017329, A094887, A239798.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (1+Sqrt(5) )/(2*Sqrt(2)); // G. C. Greubel, Sep 27 2018
  • Mathematica
    RealDigits[GoldenRatio/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    sqrt(sqrt(5)+3)/2 \\ Charles R Greathouse IV, Mar 25 2014
    

Formula

Equals Product_{k>=0} (1 + (-1)^k/(10*k+5)). - Amiram Eldar, Nov 23 2024
Equals A094887/2 = sqrt(A239798). - Hugo Pfoertner, Nov 23 2024

A179999 Length of the n-th term in the modified Look and Say sequence A110393.

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 10, 14, 18, 24, 30, 40, 50, 66, 82, 108, 134, 176, 218, 286, 354, 464, 574, 752, 930, 1218, 1506, 1972, 2438, 3192, 3946, 5166, 6386, 8360, 10334, 13528, 16722, 21890, 27058, 35420, 43782, 57312, 70842, 92734, 114626, 150048
Offset: 1

Views

Author

Nathaniel Johnston, Jan 13 2011

Keywords

Comments

The average multiplicative growth from the n-th term to the (n+1)-st term is sqrt(phi) = 1.272..., where phi = (1+sqrt(5))/2 is the golden ratio, see A139339.

Examples

			The 6th term in A110393 is 21112211, so a(6) = 8.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1+x) (-1-x+x^2) (1-x+x^2))/((1-x) (-1+x^2+x^4)),{x,0,99}],x] (* Peter J. C. Moses, Jun 23 2013 *)
  • PARI
    Vec(x*(1 + x)*(1 + x - x^2)*(1 - x + x^2) / ((1 - x)*(1 - x^2 - x^4)) + O(x^50)) \\ Colin Barker, Aug 10 2019

Formula

a(n) = length(A110393(n)).
From Colin Barker, Aug 10 2019: (Start)
G.f.: x*(1 + x)*(1 + x - x^2)*(1 - x + x^2) / ((1 - x)*(1 - x^2 - x^4)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) for n>6. (End)
From A.H.M. Smeets, Aug 10 2019 (Start)
Limit_{n->oo} a(n+1)/a(n) = (1+phi)/2 = (3+sqrt(5))/4 = A239798 for odd n.
Limit_{n->oo} a(n+1)/a(n) = 2/phi = 4/(1+sqrt(5)) = A134972 for even n.
Limit_{n->oo} a(n+2)/a(n) = (1+phi)/phi = phi = A001622. (End)
For odd n > 1, a(n) = 4*Fibonacci((n + 1)/2) - 2. For even n, a(n) = 2*Fibonacci(n/2 + 2) - 2. - Ehren Metcalfe, Aug 10 2019

A341906 Decimal expansion of the moment of inertia of a solid regular dodecahedron with a unit mass and a unit edge length.

Original entry on oeis.org

6, 0, 7, 3, 5, 5, 5, 0, 3, 7, 4, 1, 6, 3, 9, 3, 2, 7, 1, 9, 9, 8, 5, 9, 2, 4, 3, 6, 0, 1, 7, 3, 2, 5, 7, 7, 2, 7, 3, 9, 4, 7, 0, 5, 3, 4, 1, 6, 1, 6, 5, 0, 1, 0, 8, 2, 1, 8, 8, 3, 3, 0, 8, 5, 7, 0, 0, 3, 4, 3, 8, 6, 9, 9, 9, 5, 8, 1, 3, 0, 3, 5, 9, 0, 5, 4, 0
Offset: 0

Views

Author

Amiram Eldar, Jun 04 2021

Keywords

Comments

The moments of inertia of the five Platonic solids were apparently first calculated by the Canadian physicist John Satterly (1879-1963) in 1957.
The moment of inertia of a solid regular dodecahedron with a uniform mass density distribution, mass M, and edge length L is I = c*M*L^2, where c is this constant.
The corresponding values of c for the other Platonic solids are:
Tetrahedron: 1/20 (= A020761/10).
Octahedron: 1/10 (= A000007).
Cube: 1/6 (= A020793).
Icosahedron: (3 + sqrt(5))/20 (= A104457/10).

Examples

			0.60735550374163932719985924360173257727394705341616...
		

Crossrefs

Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798.

Programs

  • Mathematica
    RealDigits[(95 + 39*Sqrt[5])/300, 10, 100][[1]]

Formula

Equals (95 + 39*sqrt(5))/300.
Equals (28 + 39*phi)/150, where phi is the golden ratio (A001622).
Previous Showing 11-15 of 15 results.