cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A381544 Number of integer partitions of n not containing more ones than any other part.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 7, 8, 13, 17, 24, 30, 45, 54, 75, 97, 127, 160, 212, 263, 342, 427, 541, 672, 851, 1046, 1307, 1607, 1989, 2428, 2993, 3631, 4443, 5378, 6533, 7873, 9527, 11424, 13752, 16447, 19701, 23470, 28016, 33253, 39537, 46801, 55428, 65408, 77238
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2025

Keywords

Examples

			The a(2) = 1 through a(9) = 17 partitions:
  (2)  (3)   (4)   (5)    (6)     (7)     (8)      (9)
       (21)  (22)  (32)   (33)    (43)    (44)     (54)
             (31)  (41)   (42)    (52)    (53)     (63)
                   (221)  (51)    (61)    (62)     (72)
                          (222)   (322)   (71)     (81)
                          (321)   (331)   (332)    (333)
                          (2211)  (421)   (422)    (432)
                                  (2221)  (431)    (441)
                                          (521)    (522)
                                          (2222)   (531)
                                          (3221)   (621)
                                          (3311)   (3222)
                                          (22211)  (3321)
                                                   (4221)
                                                   (22221)
                                                   (32211)
                                                   (222111)
		

Crossrefs

The complement is counted by A241131, ranks A360013 = 2*A360015 (if we prepend 1).
The Heinz numbers of these partitions are A381439.
The case of equality is A382303, ranks A360014.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047993 counts partitions with max part = length, ranks A106529.
A091602 counts partitions by the greatest multiplicity, rank statistic A051903.
A116598 counts ones in partitions, rank statistic A007814.
A239964 counts partitions with max multiplicity = length, ranks A212166.
A240312 counts partitions with max part = max multiplicity, ranks A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks A381543.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,1]<=Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}]

A238495 Number of partitions p of n such that min(p) + (number of parts of p) is not a part of p.

Original entry on oeis.org

1, 2, 3, 4, 7, 9, 14, 19, 27, 36, 51, 66, 90, 118, 156, 201, 264, 336, 434, 550, 700, 880, 1112, 1385, 1733, 2149, 2666, 3283, 4049, 4956, 6072, 7398, 9009, 10922, 13237, 15970, 19261, 23147, 27790, 33260, 39776, 47425, 56497, 67133, 79685, 94371, 111653
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2014

Keywords

Comments

Also the number of integer partitions of n + 1 with median > 1, or with no more 1's than non-1 parts. - Gus Wiseman, Jul 10 2023

Examples

			a(6) = 9 counts all the 11 partitions of 6 except 42 and 411.
From _Gus Wiseman_, Jul 10 2023 (Start)
The a(2) = 1 through a(8) = 14 partitions:
  (2)  (3)   (4)   (5)    (6)     (7)     (8)
       (21)  (22)  (32)   (33)    (43)    (44)
             (31)  (41)   (42)    (52)    (53)
                   (221)  (51)    (61)    (62)
                          (222)   (322)   (71)
                          (321)   (331)   (332)
                          (2211)  (421)   (422)
                                  (2221)  (431)
                                  (3211)  (521)
                                          (2222)
                                          (3221)
                                          (3311)
                                          (4211)
                                          (22211)
(End)
		

Crossrefs

Cf. A096373.
For mean instead of median we have A000065, ranks A057716.
The complement is counted by A027336, ranks A364056.
Rows sums of A359893 if we remove the first column.
These partitions have ranks A364058.
A000041 counts integer partitions.
A008284 counts partitions by length, A058398 by mean.
A025065 counts partitions with low mean 1, ranks A363949.
A124943 counts partitions by low median, high A124944.
A241131 counts partitions with low mode 1, ranks A360015.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, Length[p] + Min[p]]], {n, 50}]
    Table[Length[Select[IntegerPartitions[n+1],Median[#]>1&]],{n,30}] (* Gus Wiseman, Jul 10 2023 *)

Formula

From Gus Wiseman, Jul 11 2023: (Start)
a(n>2) = A000041(n) - A096373(n-2).
a(n>1) = A000041(n-2) + A002865(n+1).
a(n) = A000041(n+1) - A027336(n).
(End)

Extensions

Formula corrected by Gus Wiseman, Jul 11 2023

A241090 Number of partitions p of n such that (number of numbers in p having multiplicity > 1) = number of 1s in p.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 3, 5, 6, 10, 12, 16, 21, 29, 36, 47, 58, 77, 93, 121, 146, 185, 225, 280, 338, 419, 505, 612, 743, 888, 1075, 1283, 1539, 1822, 2190, 2575, 3073, 3612, 4287, 5022, 5936, 6938, 8158, 9527, 11151, 12983, 15156, 17617, 20468, 23770, 27531
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2014

Keywords

Examples

			a(6) counts these 3 partitions:  6, 42, 2211.
		

Crossrefs

Programs

  • Mathematica
    z = 30; f[n_] := f[n] = IntegerPartitions[n]; e[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; Table[Count[f[n], p_ /; e[p] == Count[p, 1]], {n, 0, z}]

A241132 Number of partitions p of n such that (maximal multiplicity over the parts of p) = (number of numbers in p having multiplicity > 1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 4, 2, 5, 6, 10, 16, 17, 23, 32, 42, 53, 79, 88, 117, 146, 189, 230, 298, 374, 452, 562, 688, 842, 1036, 1256, 1520, 1876, 2225, 2688, 3226, 3875, 4608, 5528, 6553, 7799, 9272, 10936, 12903, 15239, 17919, 21038, 24714, 28922, 33819
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2014

Keywords

Examples

			a(10) counts these 4 partitions:  4411, 42211, 3322, 33211.
		

Crossrefs

Programs

  • Mathematica
    z = 30; e[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]];
    m[p_] := Max[Map[Length, Split[p]]]; Table[Count[IntegerPartitions[n], p_ /; m[p] == e[p]], {n, 0, z}]

A364160 Numbers whose least prime factor has the greatest exponent.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 76, 79, 80, 81, 83, 84, 88, 89, 92, 96, 97, 99, 101, 103, 104, 107, 109, 112, 113, 116
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2023

Keywords

Comments

First differs from A334298 in having 600 and lacking 180.
Also numbers whose minimum part in prime factorization is a unique mode.
If k is a term, then so are all powers of k. - Robert Israel, Sep 17 2024

Examples

			The prime factorization of 600 is 2*2*2*3*5*5, and 3 > max(1,2), so 600 is in the sequence.
The prime factorization of 180 is 2*2*3*3*5, but 2 <= max(2,1), so 180 is not in the sequence.
The terms together with their prime indices begin:
     1: {}           29: {10}              67: {19}
     2: {1}          31: {11}              68: {1,1,7}
     3: {2}          32: {1,1,1,1,1}       71: {20}
     4: {1,1}        37: {12}              72: {1,1,1,2,2}
     5: {3}          40: {1,1,1,3}         73: {21}
     7: {4}          41: {13}              76: {1,1,8}
     8: {1,1,1}      43: {14}              79: {22}
     9: {2,2}        44: {1,1,5}           80: {1,1,1,1,3}
    11: {5}          45: {2,2,3}           81: {2,2,2,2}
    12: {1,1,2}      47: {15}              83: {23}
    13: {6}          48: {1,1,1,1,2}       84: {1,1,2,4}
    16: {1,1,1,1}    49: {4,4}             88: {1,1,1,5}
    17: {7}          52: {1,1,6}           89: {24}
    19: {8}          53: {16}              92: {1,1,9}
    20: {1,1,3}      56: {1,1,1,4}         96: {1,1,1,1,1,2}
    23: {9}          59: {17}              97: {25}
    24: {1,1,1,2}    60: {1,1,2,3}         99: {2,2,5}
    25: {3,3}        61: {18}             101: {26}
    27: {2,2,2}      63: {2,2,4}          103: {27}
    28: {1,1,4}      64: {1,1,1,1,1,1}    104: {1,1,1,6}
		

Crossrefs

Allowing any unique mode gives A356862, complement A362605.
Allowing any unique co-mode gives A359178, complement A362606.
The even case is A360013, counted by A241131.
For greatest instead of least we have A362616, counted by A362612.
These partitions are counted by A364193.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Maple
    filter:= proc(n) local F,i;
      F:= ifactors(n)[2];
      if nops(F) = 1 then return true fi;
      i:= min[index](F[..,1]);
      andmap(t -> F[t,2] < F[i,2], {$1..nops(F)} minus {i})
    end proc:
    filter(1):= true:
    select(filter, [$1..200]); # Robert Israel, Sep 17 2024
  • Mathematica
    Select[Range[100],First[Last/@FactorInteger[#]] > Max@@Rest[Last/@FactorInteger[#]]&]

A382303 Number of integer partitions of n with exactly as many ones as the next greatest multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 2, 4, 5, 8, 6, 15, 13, 19, 25, 33, 36, 54, 58, 80, 96, 122, 141, 188, 217, 274, 326, 408, 474, 600, 695, 859, 1012, 1233, 1440, 1763, 2050, 2475, 2899, 3476, 4045, 4850, 5630, 6695, 7797, 9216, 10689, 12628, 14611, 17162, 19875, 23253
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2025

Keywords

Examples

			The a(3) = 1 through a(10) = 8 partitions:
  (21)  (31)  (41)  (51)    (61)   (71)    (81)      (91)
                    (321)   (421)  (431)   (531)     (541)
                    (2211)         (521)   (621)     (631)
                                   (3311)  (32211)   (721)
                                           (222111)  (4321)
                                                     (4411)
                                                     (33211)
                                                     (42211)
		

Crossrefs

First differences of A241131, ranks A360013 = 2*A360015 (if we prepend 1).
The Heinz numbers of these partitions are A360014.
Equal case of A381544 (ranks A381439).
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047993 counts partitions with max = length, ranks A106529.
A091602 counts partitions by the greatest multiplicity, rank statistic A051903.
A116598 counts ones in partitions, rank statistic A007814.
A239964 counts partitions with max multiplicity = length, ranks A212166.
A240312 counts partitions with max = max multiplicity, ranks A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks A381543.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,1]==Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}]

A364059 Number of integer partitions of n whose rounded mean is > 1. Partitions with mean >= 3/2.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 9, 11, 18, 26, 35, 49, 70, 89, 123, 164, 212, 278, 366, 460, 597, 762, 957, 1210, 1530, 1891, 2369, 2943, 3621, 4468, 5507, 6703, 8210, 10004, 12115, 14688, 17782, 21365, 25743, 30913, 36965, 44210, 52801, 62753, 74667, 88626, 104874, 124070
Offset: 0

Views

Author

Gus Wiseman, Jul 06 2023

Keywords

Comments

We use the "rounding half to even" rule, see link.

Examples

			The a(0) = 0 through a(8) = 18 partitions:
  .  .  (2)  (3)   (4)   (5)    (6)     (7)     (8)
             (21)  (22)  (32)   (33)    (43)    (44)
                   (31)  (41)   (42)    (52)    (53)
                         (221)  (51)    (61)    (62)
                         (311)  (222)   (322)   (71)
                                (321)   (331)   (332)
                                (411)   (421)   (422)
                                (2211)  (511)   (431)
                                (3111)  (2221)  (521)
                                        (3211)  (611)
                                        (4111)  (2222)
                                                (3221)
                                                (3311)
                                                (4211)
                                                (5111)
                                                (22211)
                                                (32111)
                                                (41111)
		

Crossrefs

Rounding-up gives A000065.
Rounding-down gives A110618, ranks A344291.
For median instead of mean we appear to have A238495.
The complement is counted by A363947, ranks A363948.
A000041 counts integer partitions.
A008284 counts partitions by length, A058398 by mean.
A025065 counts partitions with low mean 1, ranks A363949.
A067538 counts partitions with integer mean, ranks A316413.
A124943 counts partitions by low median, high A124944.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Round[Mean[#]]>1&]],{n,0,30}]

Formula

a(n) = A000041(n) - A363947(n).

A382526 Number of integer partitions of n with fewer ones than greatest multiplicity.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 41, 56, 72, 94, 124, 158, 205, 262, 331, 419, 531, 663, 829, 1033, 1281, 1581, 1954, 2393, 2936, 3584, 4366, 5300, 6433, 7764, 9374, 11277, 13548, 16225, 19425, 23166, 27623, 32842, 39004, 46212, 54719, 64610, 76251
Offset: 0

Views

Author

Gus Wiseman, Apr 05 2025

Keywords

Examples

			The a(2) = 1 through a(9) = 12 partitions:
  (2)  (3)  (4)   (5)    (6)    (7)     (8)      (9)
            (22)  (32)   (33)   (43)    (44)     (54)
                  (221)  (42)   (52)    (53)     (63)
                         (222)  (322)   (62)     (72)
                                (331)   (332)    (333)
                                (2221)  (422)    (432)
                                        (2222)   (441)
                                        (3221)   (522)
                                        (22211)  (3222)
                                                 (3321)
                                                 (4221)
                                                 (22221)
		

Crossrefs

The complement (greater than or equal to) is A241131 except first, ranks A360015.
The opposite version (greater than) is A241131 shifted except first, ranks A360013.
These partitions have ranks A382856, complement A360015.
The weak version (less than or equal to) is A381544, ranks A381439.
For equality we have A382303, ranks A360014.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047993 counts partitions with max part = length, ranks A106529.
A091602 counts partitions by the greatest multiplicity, rank statistic A051903.
A116598 counts ones in partitions, rank statistic A007814.
A239964 counts partitions with max multiplicity = length, ranks A212166.
A240312 counts partitions with max part = max multiplicity, ranks A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks A381543.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,1]
    				

A382856 Numbers whose prime indices do not have a mode of 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 101, 103, 105, 107, 108, 109, 111, 113, 115
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2025

Keywords

Examples

			The terms together with their prime indices begin:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  18: {1,2,2}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
		

Crossrefs

The case of non-unique mode is A024556.
The complement is A360015 except first.
Partitions of this type are are counted by A382526 except first, complement A241131.
A091602 counts partitions by the greatest multiplicity, rank statistic A051903.
A112798 lists prime indices, length A001222, sum A056239.
A116598 counts ones in partitions, rank statistic A007814.
A240312 counts partitions with max part = max multiplicity, ranks A381542.
A362611 counts modes in prime indices, triangle A362614.
For co-mode see A359178, A362613, A364061 (A364062), A364158 (A364159).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],FreeQ[Commonest[prix[#]],1]&]
Previous Showing 21-29 of 29 results.