A242341 Numbers k such that k*10^k - 1 is a semiprime.
1, 6, 20, 29, 35, 40, 79, 164, 185, 198, 201, 218, 248, 249, 251, 264, 267, 274, 305, 323, 339, 344, 350, 362, 432, 539
Offset: 1
Programs
-
Magma
IsSemiprime:=func; [n: n in [2..70] | IsSemiprime(s) where s is n*10^n-1];
-
Maple
issemiprime:= proc(n) local F, t; F:= ifactors(n, easy)[2]; t:= add(f[2], f=F); if t = 1 then if type(F[1][1], integer) then return false fi elif t = 2 then return not hastype(F, name) else # t > 2 return false fi; F:= ifactors(n)[2]; return evalb(add(f[2], f=F)=2); end proc: select(t -> issemiprime(t*10^t-1), [$1..80]); # Robert Israel, Sep 04 2016
-
Mathematica
Select[Range[70], PrimeOmega[# 10^# - 1]==2&]
-
PARI
is(n)=bigomega(n*10^n-1)==2 \\ Charles R Greathouse IV, Sep 04 2016
Extensions
Terms 1 and 79 from Robert Israel, Sep 04 2016
a(8)-a(26) from Hugo Pfoertner, Jul 29 2019
Comments