cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A291350 Numbers k such that k!4 + 2^9 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).

Original entry on oeis.org

9, 11, 13, 17, 19, 21, 29, 31, 33, 35, 67, 103, 111, 129, 179, 355, 713, 799, 921, 1013, 1389, 1543, 2097, 2287, 3657, 4115, 7031, 10689, 11715, 16401, 16893, 19497, 29737, 35615
Offset: 1

Views

Author

Robert Price, Aug 22 2017

Keywords

Comments

Corresponding primes are: 557, 743, 1097, 10457, 66347, 209357, 151413137, ...
a(35) > 10^5.
Terms > 35 correspond to probable primes.

Examples

			11!4 + 2^9 = 11*7*3*1 + 512 = 743 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^9] &]

A291351 Numbers k such that k!4 + 2^10 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).

Original entry on oeis.org

9, 13, 23, 27, 33, 47, 61, 113, 145, 161, 191, 281, 291, 417, 869, 919, 1213, 1297, 1663, 2103, 2297, 2325, 3241, 3895, 4337, 6645, 7911, 8737, 13369, 13555, 19245, 34025, 47779, 48589, 54521, 91355
Offset: 1

Views

Author

Robert Price, Aug 22 2017

Keywords

Comments

Corresponding primes are: 1069, 1609, 1515229, 40884559, 4996617649, ...
a(37) > 10^5.
Terms > 33 correspond to probable primes.

Examples

			13!4 + 2^10 = 13*9*5*1 + 1024 = 1609 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^10] &]
    Select[Range[10^3],PrimeQ[Times@@Range[#,1,-4]+2^10]&] (* The program generates the first 16 terms of the sequence. *) (* Harvey P. Dale, Feb 08 2025 *)

Extensions

a(36)-a(37) from Robert Price, Sep 25 2019

A374901 Numbers k such that k!^2 + ((k - 1)!^2) + 1 is prime.

Original entry on oeis.org

1, 3, 4, 6, 10, 11, 118, 271, 288, 441, 457, 2931, 5527, 6984, 9998, 10395, 13703
Offset: 1

Views

Author

Arsen Vardanyan, Jul 31 2024

Keywords

Comments

a(18) > 15000 - Karl-Heinz Hofmann, Aug 23 2024

Examples

			4 is a term, because 4!^2 + 3!^2 + 1 = 576 + 36 + 1 = 613 is a prime number.
		

Crossrefs

Programs

  • PARI
    is(k) = isprime((k!^2)+((k-1)!)^2+1);
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A374901_gen(): # generator of terms
        f = 1
        for k in count(1):
            if isprime((k**2+1)*f+1):
                yield k
            f *= k**2
    A374901_list = list(islice(A374901_gen(),10)) # Chai Wah Wu, Oct 02 2024

Extensions

a(12)-a(14) from Michael S. Branicky, Aug 01 2024
a(15)-a(17) from Karl-Heinz Hofmann, Aug 23 2024
Previous Showing 41-43 of 43 results.