cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A160402 Primes made up of all distinct digits except 0 and 1.

Original entry on oeis.org

23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657, 23495867, 23496587, 23498567, 23546879, 23546987, 23548697, 23564897, 23564987, 23567849, 23569487, 23576489, 23584679, 23587649, 23589647, 23594687
Offset: 1

Views

Author

Lekraj Beedassy, May 13 2009

Keywords

Comments

More precisely, "primes made up of all distinct digits from 2 to 9, each occurring once." Since this restricts the number of digits to 8, the sequence is finite.
The last term of this sequence is a(3098) = 98745623. - Nathaniel Johnston, Jun 24 2011
Also numbers n such that the list of divisors of n contains all the digits 1-9 and each digit appears exactly once (in base 10). There are no composite numbers with this property. Numbers n such that A243360(n) = 987654321. - Jaroslav Krizek, Jun 19 2014

Crossrefs

Cf. A029743, A106116. Subsequence of A074665.

Programs

  • Magma
    [n: n in [1..100000000] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 987654321] // Jaroslav Krizek, Jun 19 2014
  • Maple
    A160402:={}: p:=23456789: while p<=98765432 do d:=convert(p,base,10): ddig:=true: for k from 0 to 9 do if((k<=1 and numboccur(k,d)>0) or (k>=2 and numboccur(k,d)<>1))then ddig:=false:break: fi: od: if(ddig)then A160402:=A160402 union {p}: fi: p:=nextprime(p): od: op(sort(convert(A160402,list))); # Nathaniel Johnston, Jun 24 2011

Extensions

Keywords "base,fini" added by R. J. Mathar, May 14 2009

A243361 a(n) = arrange digits of concatenation of divisors of n (A037278, A176558) in increasing order in base 10 (zero digits are omitted).

Original entry on oeis.org

1, 12, 13, 124, 15, 1236, 17, 1248, 139, 1125, 111, 1122346, 113, 11247, 11355, 112468, 117, 1123689, 119, 112245, 11237, 111222, 123, 1122234468, 1255, 112236, 12379, 11224478, 129, 111233556, 113, 11223468, 111333, 112347, 13557, 111223346689, 137
Offset: 1

Views

Author

Jaroslav Krizek, Jun 04 2014

Keywords

Comments

See A243362 = sequence of numbers n such that a(n) = 123456789: 54023, 54203, 500407, 23456789… First prime in this sequence is 23456789.

Examples

			For n = 20; divisors of 20: 1, 2, 4, 5, 10, 20; a(20) = 112245.
		

Crossrefs

Programs

A243362 Numbers n such that A243361(n) = 123456789.

Original entry on oeis.org

54023, 54203, 500407, 23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657, 23495867, 23496587, 23498567, 23546879, 23546987, 23548697, 23564897, 23564987, 23567849, 23569487, 23576489, 23584679, 23587649, 23589647, 23594687
Offset: 1

Views

Author

Jaroslav Krizek, Jun 04 2014

Keywords

Comments

Supersequence of A243363, A243364 and A160402.
Conjecture 1: sequence is infinite.
Conjecture 2: a(1), a(2) and a(3) are composites; there are no other numbers n > 3 such that a(n) = composite number.

Examples

			Sets of divisors of a(n): (1, 89, 607, 54023); (1, 67, 809, 54203); (1, 83, 6029, 500407); (1, 23456789); …
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | Seqint(Reverse(Sort(&cat[(Intseq(k)): k in Divisors(n)]))) eq 123456789];

Formula

a(1) = 54023; a(2) = 54203; a(3) = 500407; a(4) … a(3101) = A160402; a(3102) ... a(22659) = A243363; ....

A243364 Primes whose reverse concatenation of divisors (A176558) contains all the digits 1-9 exactly once; the number of digits 0 is arbitrary (in base 10).

Original entry on oeis.org

23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657, 23495867, 23496587, 23498567, 23546879, 23546987, 23548697, 23564897, 23564987, 23567849, 23569487, 23576489, 23584679, 23587649, 23589647, 23594687, 23645879, 23645987
Offset: 1

Views

Author

Jaroslav Krizek, Jun 04 2014

Keywords

Comments

Sequence differs from A160402; a(n) = A160402(n) for first 3098 terms, a(3099) = 203457869.
Subsequence of A243362. Supersequence of A160402 and A243363.
Primes p such that A243361(p) = 123456789.
Conjecture: sequence is infinite.

Examples

			Prime 200000000003456789 is in sequence because A176558(200000000003456789) = 2000000000034567891; each digit 1 - 9 appears exactly once.
		

Crossrefs

Formula

a(1) ... a(3098) = A160402; a(3099) ... a(22656) = A243363; ...
Previous Showing 21-24 of 24 results.