cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A256839 Primes of form n^2 + 14641.

Original entry on oeis.org

14657, 14741, 14897, 15217, 15541, 15797, 15937, 19541, 20117, 22037, 22741, 23857, 25457, 28097, 30517, 31541, 38977, 40241, 42197, 43541, 44917, 47041, 48497, 50741, 57077, 58741, 61297, 64817, 65717, 74177, 77141, 80177, 82241, 87541, 107057, 117041
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256839 n = a256839_list !! (n-1)
    a256839_list = [x | x <- map (+ 14641) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[500]^2+14641,PrimeQ] (* Harvey P. Dale, Mar 20 2017 *)

A256840 Primes of form n^2 + 20736.

Original entry on oeis.org

20857, 21577, 21961, 23761, 27961, 28657, 29017, 29761, 30937, 33961, 34897, 37897, 41761, 42937, 49297, 51361, 60337, 62761, 65257, 80761, 83737, 93097, 107761, 111337, 113761, 122497, 132961, 142537, 151057, 164377, 173617, 181537, 188017, 192961, 218761
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256841 (b=13).

Programs

  • Haskell
    a256840 n = a256840_list !! (n-1)
    a256840_list = [x | x <- map (+ 20736) a000290_list, a010051' x == 1]

A256841 Primes of form n^2 + 28561.

Original entry on oeis.org

28597, 28661, 28817, 28961, 29137, 29717, 30161, 30497, 30677, 31477, 32917, 33461, 34337, 34961, 35617, 37397, 38561, 42017, 42961, 47057, 49297, 49877, 51061, 55457, 60961, 62417, 64661, 66977, 70177, 70997, 72661, 74357, 75217, 76961, 78737, 86161, 93077
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12).

Programs

  • Haskell
    a256841 n = a256841_list !! (n-1)
    a256841_list = [x | x <- map (+ 28561) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[300]^2+28561,PrimeQ] (* Harvey P. Dale, Oct 18 2021 *)

A241751 a(n) = n^2 + 16.

Original entry on oeis.org

16, 17, 20, 25, 32, 41, 52, 65, 80, 97, 116, 137, 160, 185, 212, 241, 272, 305, 340, 377, 416, 457, 500, 545, 592, 641, 692, 745, 800, 857, 916, 977, 1040, 1105, 1172, 1241, 1312, 1385, 1460, 1537, 1616, 1697, 1780, 1865, 1952, 2041, 2132, 2225, 2320, 2417, 2516
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequences listed in A114962.
Cf. A000290, A243451 (primes).

Programs

Formula

G.f.: (16 - 31*x + 17*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 03 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 4*Pi*coth(4*Pi))/32.
Sum_{n>=0} (-1)^n/a(n) = (1 + 4*Pi*cosech(4*Pi))/32. (End)
E.g.f.: exp(x)*(16 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A243449 Primes of the form n^2 + 14.

Original entry on oeis.org

23, 239, 743, 1103, 2039, 5639, 7583, 8663, 27239, 33503, 38039, 42863, 59063, 81239, 88223, 91823, 119039, 131783, 140639, 164039, 189239, 205223, 245039, 263183, 288383, 328343, 342239, 378239, 393143, 400703, 431663, 439583, 514103, 660983, 710663, 950639
Offset: 1

Views

Author

Vincenzo Librandi, Jun 05 2014

Keywords

Crossrefs

Cf. A121250 (associated n).
Cf. primes of the form n^2+k: A144255 (k=1), A056899 (k=2), A049423 (k=3), A005473 (k=4), A056905 (k=5), A056909 (k=6), A079138 (k=7), A138338 (k=8), A138353 (k=9), A138355 (k=10), A138362 (k=11), A138368 (k=12), A138375 (k=13), this sequence (k=14), A243450 (k=15), A243451 (k=16), A228244 (k=17), A174812 (k=42).

Programs

  • Magma
    [a: n in [0..1000] | IsPrime(a) where a is n^2+14];
  • Mathematica
    Select[Table[n^2 + 14, {n, 0, 2000}], PrimeQ]
    Select[Range[1,1001,2]^2+14,PrimeQ] (* Harvey P. Dale, May 30 2023 *)

A346145 Primes of the form k^2 + 25.

Original entry on oeis.org

29, 41, 61, 89, 281, 349, 509, 601, 701, 809, 1049, 1181, 1321, 1789, 2141, 2729, 3389, 4649, 5209, 5501, 5801, 8861, 9241, 9629, 10429, 11261, 11689, 12569, 15401, 15901, 17449, 17981, 18521, 19069, 21341, 21929, 23741, 24989, 26921, 27581, 33149, 39229, 40829, 41641, 42461, 45821, 46681, 52009
Offset: 1

Views

Author

Todor Szimeonov, Jul 06 2021

Keywords

Comments

k^2 + 25 = (k+5i)*(k-5i), where i is the imaginary unit.

Crossrefs

Programs

  • Mathematica
    Select[Range[230]^2 + 25, PrimeQ] (* Amiram Eldar, Jul 06 2021 *)
  • PARI
    list(lim)=my(v=List(),p); forstep(k=2,sqrtint(lim\1-25),2, if(isprime(p = k^2+25), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jul 06 2021

Formula

a(n) >> n log^2 n (Brun sieve). - Charles R Greathouse IV, Jul 06 2021
Previous Showing 11-16 of 16 results.