cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A377588 Decimal expansion of 7*zeta(3)/(2*Pi^2) - log(2) + 1/2.

Original entry on oeis.org

2, 3, 3, 1, 3, 1, 2, 1, 8, 2, 5, 7, 5, 6, 0, 4, 8, 1, 5, 0, 6, 2, 8, 9, 3, 0, 5, 1, 3, 7, 9, 9, 0, 3, 0, 4, 9, 8, 2, 5, 0, 6, 6, 3, 5, 2, 6, 9, 3, 7, 9, 8, 5, 3, 4, 2, 0, 9, 2, 6, 4, 4, 8, 5, 3, 3, 1, 3, 5, 8, 2, 9, 2, 5, 9, 4, 2, 1, 8, 6, 5, 8, 8, 3, 2, 6, 0, 8, 6, 1, 3, 3, 5, 8, 2, 4, 2, 5, 6, 0
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2024

Keywords

Examples

			0.233131218257560481506289305137990304982506635269...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Programs

  • Mathematica
    RealDigits[7Zeta[3]/(2Pi^2)-Log[2]+1/2,10,100][[1]]

Formula

Equals Sum_{k>=1} zeta(2*k)/((k + 1)*2^(2*k)) (see Finch).

A377589 Decimal expansion of 9*zeta(3)/(2*Pi^2) - log(2) + 1/3.

Original entry on oeis.org

1, 8, 8, 2, 5, 8, 3, 7, 9, 8, 2, 4, 4, 6, 6, 8, 9, 7, 9, 6, 0, 6, 2, 8, 7, 6, 0, 3, 5, 5, 9, 4, 2, 7, 4, 4, 9, 0, 3, 8, 4, 1, 9, 0, 2, 7, 8, 2, 6, 0, 8, 9, 3, 1, 7, 6, 6, 1, 4, 7, 3, 4, 1, 3, 0, 2, 6, 2, 0, 4, 3, 4, 3, 7, 2, 5, 0, 2, 7, 9, 3, 9, 2, 7, 7, 7, 2, 5, 3, 4, 1, 9, 2, 6, 5, 5, 5, 7, 3, 2
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2024

Keywords

Examples

			0.18825837982446689796062876035594274490384190278...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Programs

  • Mathematica
    RealDigits[9Zeta[3]/(2Pi^2)-Log[2]+1/3,10,100][[1]]

Formula

Equals Sum_{k>=1} zeta(2*k)/((2*k + 3)*2^(2*k-1)) (see Finch).

A377592 Decimal expansion of 9*zeta(3)/Pi^2 - 93*zeta(5)/(2*Pi^4) - log(2) + 1/4.

Original entry on oeis.org

1, 5, 8, 0, 0, 0, 9, 6, 3, 6, 2, 5, 5, 5, 7, 7, 3, 3, 2, 6, 8, 6, 2, 9, 3, 8, 5, 9, 7, 8, 4, 5, 8, 5, 4, 9, 0, 9, 1, 7, 8, 0, 2, 8, 4, 7, 9, 6, 2, 7, 6, 1, 1, 3, 0, 8, 8, 6, 1, 4, 1, 6, 3, 1, 6, 2, 1, 8, 5, 9, 2, 6, 5, 7, 1, 5, 5, 6, 8, 4, 3, 7, 3, 7, 0, 1, 6, 0, 8, 6, 6, 1, 9, 2, 7, 0, 2, 8, 0, 9
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2024

Keywords

Examples

			0.158000963625557733268629385978458549091780284796...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Programs

  • Mathematica
    RealDigits[9Zeta[3]/Pi^2-93Zeta[5]/(2Pi^4)-Log[2]+1/4,10,100][[1]]

Formula

Equals Sum_{k>=1} zeta(2*k)/((k + 2)*2^(2*k)) (see Finch).

A263354 Decimal expansion of the generalized hypergeometric function 3F2(1/2,3/2,3/2; 5/2,5/2;x) at x=1/2.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 3, 7, 8, 0, 9, 2, 9, 0, 1, 7, 3, 6, 6, 3, 9, 7, 1, 7, 6, 0, 6, 2, 5, 4, 4, 1, 7, 1, 9, 6, 4, 6, 4, 2, 5, 1, 4, 2, 6, 3, 5, 6, 4, 0, 8, 4, 3, 1, 8, 0, 6, 7, 4, 8, 8, 8, 2, 6, 1, 9, 6, 9, 6, 7, 6, 4, 2, 3, 9, 0, 9, 8, 2, 8, 8, 0, 7, 2, 9, 7, 7, 2, 8, 0
Offset: 1

Views

Author

R. J. Mathar, Oct 16 2015

Keywords

Examples

			1.113463780929017366397176...
		

Crossrefs

Programs

  • Maple
    evalf(hypergeom([1/2,3/2,3/2],[5/2,5/2],1/2)) ;
  • Mathematica
    RealDigits[9*(4*Catalan - 2 + Pi*(Log[2] - 1))/(4*Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Aug 23 2024 *)

Formula

Equals 9*(4*Catalan-2+Pi*(log 2 -1))/(4*sqrt(2)) = 9*(A247685 -2 - A000796 * A244009) / A010487.

A263426 Permutation of the nonnegative integers: [4k+2, 4k+1, 4k, 4k+3, ...].

Original entry on oeis.org

2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15, 18, 17, 16, 19, 22, 21, 20, 23, 26, 25, 24, 27, 30, 29, 28, 31, 34, 33, 32, 35, 38, 37, 36, 39, 42, 41, 40, 43, 46, 45, 44, 47, 50, 49, 48, 51, 54, 53, 52, 55, 58, 57, 56, 59, 62, 61, 60, 63, 66, 65, 64
Offset: 0

Views

Author

Wesley Ivan Hurt, Oct 17 2015

Keywords

Comments

Fixed points are the odd numbers (A005408).

Crossrefs

Programs

  • Magma
    [n+(1+(-1)^n)*(-1)^(n*(n+1) div 2) : n in [0..80]];
    
  • Magma
    /* By definition: */ &cat[[4*k+2,4*k+1,4*k,4*k+3]: k in [0..20]]; // Bruno Berselli, Nov 08 2015
    
  • Maple
    A263426:=n->n + (1 + (-1)^n)*(-1)^(n*(n + 1)/2): seq(A263426(n), n=0..80);
  • Mathematica
    Table[n + (1 + (-1)^n)*(-1)^(n*(n + 1)/2), {n, 0, 80}]
  • PARI
    Vec((2-3*x+2*x^2+x^3)/((x-1)^2*(1+x^2)) + O(x^100)) \\ Altug Alkan, Oct 19 2015

Formula

G.f.: (2 - 3*x + 2*x^2 + x^3)/((x - 1)^2*(1 + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>3.
a(n) = n + (1 + (-1)^n)*(-1)^(n*(n+1)/2).
a(n) = 4*floor((n+1)/4) - (n mod 4) + 2.
a(n) = A092486(n) - 1.
a(n) = n + A176742(n) for n>0.
a(2n) = 2*A004442(n), a(2n+1) = A005408(n).
a(-n-1) = -A263449(n).
a(n+1) = a(n) - A132429(n+1)*(-1)^n.
Sum_{n>=0, n!=2} (-1)^(n+1)/a(n) = 1 - log(2) (A244009). - Amiram Eldar, Dec 25 2023

A309638 Nearest integer to 1/F(1/x), where F(x) is the Dickman function.

Original entry on oeis.org

1, 3, 21, 204, 2819, 50891, 1143423, 30939931, 984011503, 36098843631, 1504934136432, 70436763188525, 3664092112471681, 210056231435360023, 13175390260774094846, 898537704166507324228, 66265550246147429710863, 5259409287834480235626661, 447341910388133084658686126, 40620967386538406952534036284
Offset: 1

Views

Author

Jeremy Tan, Aug 11 2019

Keywords

Comments

The asymptotic density of the n-th-root-smooth numbers is approximately 1/a(n).
Van de Lune and Wattel show a(n) >= A001147(n) for n >= 1.

Examples

			The asymptotic density of fifth-root-smooth numbers is F(1/5) = 0.000354724700... = 1/2819.08758..., so a(5) = 2819.
		

Crossrefs

F(1/2) = A244009; F(1/3) = A175475; F(1/4) = A245238.

Formula

1/F(1/x) = 1/rho(x), where rho(x) satisfies rho'(x) = -rho(x-1)/x and rho(x) = 1 for x <= 1. rho(x) may be computed to arbitrary precision by the method of Marsaglia, Zaman and Marsaglia (implemented in the Python program in Links).
a(n) ~ exp(Ei(t) - n*t) / (t * sqrt(2*Pi*n)), where Ei is the exponential integral and t is the positive root of exp(t) - n*t - 1 (van de Lune and Wattel).

A344475 Decimal expansion of the value of the Dickman function at phi + 1 = phi^2 = (3 + sqrt(5))/2 (A104457).

Original entry on oeis.org

1, 0, 4, 6, 4, 7, 7, 6, 3, 7, 7, 3, 1, 6, 4, 8, 5, 3, 8, 5, 4, 1, 6, 9, 7, 2, 7, 7, 1, 8, 1, 9, 3, 3, 9, 4, 8, 2, 4, 1, 4, 2, 6, 9, 1, 1, 5, 7, 2, 9, 7, 9, 8, 7, 7, 1, 9, 7, 0, 9, 0, 6, 8, 0, 7, 2, 4, 6, 6, 8, 6, 3, 3, 1, 0, 1, 9, 8, 1, 7, 6, 7, 7, 7, 6, 7, 2, 7, 9, 8, 7, 7, 8, 9, 6, 5, 5, 7, 4, 5, 3, 0, 8, 7, 9
Offset: 0

Views

Author

Amiram Eldar, May 20 2021

Keywords

Examples

			0.10464776377316485385416972771819339482414269115729...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 286.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - 2*Log[GoldenRatio] + Log[GoldenRatio]^2 - Pi^2/60, 10, 100][[1]]
  • PARI
    my(phi = quadgen(5)); 1 - 2*log(phi) + log(phi)^2 - Pi^2/60 \\ Amiram Eldar, Jan 09 2025

Formula

Equals 1 - 2*log(phi) + log(phi)^2 - Pi^2/60 (Moree, 1995).

Extensions

More terms from Amiram Eldar, Jan 09 2025

A291271 The arithmetic function v_4(n,2).

Original entry on oeis.org

0, 1, 0, 2, 2, 3, 2, 4, 4, 5, 4, 6, 6, 7, 6, 8, 8, 9, 8, 10, 10, 11, 10, 12, 12, 13, 12, 14, 14, 15, 14, 16, 16, 17, 16, 18, 18, 19, 18, 20, 20, 21, 20, 22, 22, 23, 22, 24, 24, 25, 24, 26, 26, 27, 26, 28, 28, 29, 28, 30, 30, 31, 30, 32, 32, 33, 32, 34, 34
Offset: 2

Views

Author

Robert Price, Aug 21 2017

Keywords

Comments

For any integer n>=7, a(n) is the smallest number of diametrical slices needed to divide two pizzas equally between n-4 people. - Jamil Silva, Mar 29 2025

References

  • J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).

Crossrefs

Programs

  • Maple
    seq((n-gcd(n,4))/2, n=2..80); # Ridouane Oudra, Dec 28 2024
  • Mathematica
    v[g_, n_, h_] := (d = Divisors[n]; Max[(Floor[(d - 1 - GCD[d, g])/h] + 1)*n/d]); Table[v[4, n, 2], {n, 2, 70}]

Formula

Conjecture: a(n) = (n-2-cos(n*Pi)-cos(n*Pi/2))/2. - Wesley Ivan Hurt, Oct 02 2017
a(n) = (n-gcd(n,4))/2 = A291330(n)/2. - Ridouane Oudra, Dec 28 2024
Sum_{n>=5} (-1)^n/a(n) = 1 - log(2) (A244009). - Amiram Eldar, Jan 15 2025
a(2)=a(4)=0, a(3)=1, a(5)=a(6)=2, a(2n+5)=n+2, a(4n+4)=2n, a(4n+6)=2n+2. - Jamil Silva, Mar 29 2025

A348371 Decimal expansion of Sum_{k>=0} binomial(2*k,k)^2/(16^k*(k+1)^3).

Original entry on oeis.org

1, 0, 3, 9, 2, 8, 0, 4, 9, 6, 7, 9, 4, 8, 7, 6, 2, 2, 0, 0, 6, 0, 2, 5, 2, 6, 2, 0, 1, 0, 3, 5, 6, 6, 4, 4, 0, 8, 6, 6, 0, 1, 1, 2, 1, 3, 3, 0, 1, 1, 1, 0, 4, 9, 7, 3, 5, 4, 8, 9, 4, 9, 6, 9, 9, 7, 2, 4, 6, 6, 1, 4, 4, 2, 2, 6, 8, 1, 9, 2, 4, 3, 0, 9, 2, 6, 7, 9, 9, 1, 9, 8, 0, 2, 7, 0, 5, 3, 6, 7, 3, 6, 7, 8, 8
Offset: 1

Views

Author

Amiram Eldar, Oct 15 2021

Keywords

Examples

			1.03928049679487622006025262010356644086601121330111...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[48/Pi - 16*(1 - Log[2]) - 32*Catalan/Pi, 10, 100][[1]]

Formula

Equals 48/Pi - 16*(1 - log(2)) - 32*G/Pi, where G is Catalan's constant (A006752).
Equals 4F3(1/2, 1/2, 1, 1; 2, 2, 2; 1), where pFq() is the generalized hypergeometric function.
Previous Showing 11-19 of 19 results.