cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A304490 a(1) = a(2) = a(3) = 1, a(4) = 5, a(5) = 6, a(6) = 4; a(n) = a(n-a(n-2)) + a(n-a(n-4)) for n > 6.

Original entry on oeis.org

1, 1, 1, 5, 6, 4, 5, 6, 6, 9, 10, 5, 6, 12, 12, 15, 16, 5, 6, 18, 18, 21, 22, 5, 6, 24, 24, 27, 28, 5, 6, 30, 30, 33, 34, 5, 6, 36, 36, 39, 40, 5, 6, 42, 42, 45, 46, 5, 6, 48, 48, 51, 52, 5, 6, 54, 54, 57, 58, 5, 6, 60, 60, 63, 64, 5, 6, 66, 66, 69, 70, 5, 6, 72, 72, 75, 76, 5, 6, 78, 78, 81, 82, 5, 6
Offset: 1

Views

Author

Altug Alkan, May 13 2018

Keywords

Comments

A quasi-periodic solution to the recurrence a(n) = a(n-a(n-2)) + a(n-a(n-4)). Although A087777 and A240809 are highly chaotic, this sequence is completely predictable thanks to its initial conditions.

Crossrefs

Programs

  • PARI
    q=vector(85); q[1]=1;q[2]=1;q[3]=1;q[4]=5;q[5]=6;q[6]=4; for(n=7, #q, q[n] = q[n-q[n-2]]+q[n-q[n-4]]); q

Formula

a(6*k) = 5, a(6*k+1) = 6, a(6*k+2) = a(6*k+3) = 6*k, a(6*k+4) = 6*k+3, a(6*k+5) = 6*k+4 for k > 1.
Conjectures from Colin Barker, May 14 2018: (Start)
G.f.: x*(1 - x + 2*x^2 + 2*x^3 + 2*x^5 - x^6 + 4*x^7 - 3*x^8 + x^9 - x^10 - 2*x^11 + 2*x^12 - x^13 + x^14 + x^15 - x^16) / ((1 - x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 5*a(n-4) + 6*a(n-5) - 5*a(n-6) + 4*a(n-7) - 3*a(n-8) + 2*a(n-9) - a(n-10) for n>17.
(End)

A304493 a(0) = 1; a(n) = a(n-a(floor(n/2))) + a(n-a(floor(n/4))).

Original entry on oeis.org

1, 2, 3, 5, 5, 8, 7, 11, 13, 12, 14, 18, 19, 20, 17, 19, 23, 24, 27, 28, 26, 31, 22, 27, 32, 34, 35, 37, 42, 46, 46, 45, 40, 40, 45, 40, 44, 48, 49, 55, 52, 56, 60, 65, 57, 64, 70, 72, 69, 70, 68, 64, 64, 67, 69, 67, 72, 71, 75, 80, 73, 79, 89, 84, 88, 94, 100, 94, 84, 96, 116, 117, 106, 116, 107, 106
Offset: 0

Views

Author

Ilya Gutkovskiy, May 13 2018

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
      procname(n-procname(floor(n/2)))+procname(n-procname(floor(n/4)))
    end proc:
    f(0):= 1;
    map(f, [$0..100]); # Robert Israel, Dec 02 2019
  • Mathematica
    a[n_] := a[n] = a[n - a[Floor[n/2]]] + a[n - a[Floor[n/4]]]; a[0] = 1; Table[a[n], {n, 0, 75}]

A304621 a(n) = 10 - n for 1 <= n <= 9. Thereafter a(n) = a(n-a(n-3)) + a(n-a(n-6)).

Original entry on oeis.org

9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 5, 7, 15, 8, 10, 12, 8, 7, 9, 14, 13, 24, 11, 13, 21, 17, 16, 9, 14, 16, 33, 17, 16, 30, 20, 28, 9, 20, 16, 42, 26, 25, 39, 20, 28, 9, 29, 25, 51, 29, 28, 48, 26, 31, 9, 32, 31, 60, 32, 28, 57, 32, 37, 9, 32, 34, 69, 56, 37, 66, 26, 40, 9, 32, 40, 78, 56, 40, 75, 38, 52, 9, 44, 37, 87, 50
Offset: 1

Views

Author

Altug Alkan, May 15 2018

Keywords

Crossrefs

Programs

  • Magma
    [n le 9 select 10-n else Self(n-Self(n-3))+Self(n-Self(n-6)): n in [1..80]]; // Vincenzo Librandi, May 20 2018
  • Maple
    f:= proc(n) option remember; procname(n-procname(n-3))+procname(n-procname(n-6)) end proc:
    for i from 1 to 9 do f(i):= 10-i od:
    map(f, [$1..100]); # Robert Israel, May 16 2018
  • Mathematica
    Nest[Append[#, #[[1 + Length@ # - #[[-3]] ]] + #[[1 + Length@ # - #[[-6]] ]] ] &, Range[9, 1, -1], 77] (* Michael De Vlieger, May 20 2018 *)
  • PARI
    q=vector(10^5); for(n=1, 9, q[n]=9-n+1);for(n=10, #q, q[n]=q[n-q[n-3]]+ q[n-q[n-6]]); q
    

A309650 a(1) = 3, a(2) = 1, a(3) = 4, a(4) = 2; a(n) = a(n-a(n-2)) + a(n-a(n-3)) for n > 4.

Original entry on oeis.org

3, 1, 4, 2, 5, 3, 6, 9, 7, 5, 3, 11, 14, 7, 5, 8, 16, 19, 7, 5, 8, 21, 24, 12, 5, 8, 26, 29, 12, 5, 8, 31, 34, 12, 5, 13, 36, 39, 12, 5, 13, 41, 44, 12, 5, 13, 46, 49, 17, 5, 13, 51, 54, 17, 5, 13, 56, 59, 17, 5, 13, 61, 64, 17, 5, 18, 66, 69, 17, 5, 18, 71, 74, 17, 5, 18, 76, 79, 17, 5, 18, 81, 84, 22, 5
Offset: 1

Views

Author

Altug Alkan and Nathan Fox, Aug 11 2019

Keywords

Comments

A well-defined quasi-periodic solution for recurrence (a(n) = a(n-a(n-2)) + a(n-a(n-3))).

Crossrefs

Programs

  • Magma
    I:=[3,1,4,2]; [n le 4 select I[n] else  Self(n-Self(n-2)) + Self(n-Self(n-3)): n in [1..90]]; // Marius A. Burtea, Aug 11 2019
  • Mathematica
    Nest[Append[#, #[[-#[[-2]] ]] + #[[-#[[-3]] ]]] &, {3, 1, 4, 2}, 81] (* Michael De Vlieger, May 08 2020 *)
  • PARI
    q=vector(100); q[1]=3; q[2]=1; q[3]=4; q[4]=2; for(n=5, #q, q[n] = q[n-q[n-2]] + q[n-q[n-3]]); q
    

Formula

For k >= 1:
a(5*k) = 5,
a(5*k+1) = 5*floor(sqrt(k)+1/2)-2,
a(5*k+2) = 5*k+1,
a(5*k+3) = 5*k+4,
a(5*k+4) = 5*floor(sqrt(k))+2.

A309967 a(1) = a(2) = 1, a(3) = 2, a(4) = 3, a(5) = 8, a(6) = 6, a(7) = a(8) = 4; a(n) = a(n-a(n-1)) + a(n-a(n-4)) for n > 8.

Original entry on oeis.org

1, 1, 2, 3, 8, 6, 4, 4, 9, 4, 8, 7, 9, 12, 6, 13, 7, 14, 17, 6, 18, 7, 19, 22, 6, 23, 7, 24, 27, 6, 28, 7, 29, 32, 6, 33, 7, 34, 37, 6, 38, 7, 39, 42, 6, 43, 7, 44, 47, 6, 48, 7, 49, 52, 6, 53, 7, 54, 57, 6, 58, 7, 59, 62, 6, 63, 7, 64, 67, 6, 68, 7, 69, 72, 6, 73, 7, 74, 77, 6, 78, 7
Offset: 1

Views

Author

Altug Alkan, Aug 25 2019

Keywords

Comments

A quasilinear solution sequence for Hofstadter V recurrence (a(n) = a(n-a(n-1)) + a(n-a(n-4))).

Crossrefs

Programs

  • PARI
    q=vector(100); q[1]=q[2]=1; q[3]=2; q[4]=3; q[5]=8; q[6]=6; q[7]=q[8]=4; for(n=9, #q, q[n]=q[n-q[n-1]]+q[n-q[n-4]]); q
    
  • PARI
    Vec(x*(1 + x + 2*x^2 + 3*x^3 + 8*x^4 + 4*x^5 + 2*x^6 + 3*x^8 - 12*x^9 - 3*x^10 +  3*x^12 - 3*x^13 + 6*x^14 + 3*x^15 - 3*x^16 + 2*x^18 - 2*x^19) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2) + O(x^40)) \\ Colin Barker, Aug 25 2019

Formula

For k > 2:
a(5*k-4) = 5*k-7,
a(5*k-3) = 7,
a(5*k-2) = 5*k-6,
a(5*k-1) = 5*k-3,
a(5*k) = 6.
From Colin Barker, Aug 25 2019: (Start)
G.f.: x*(1 + x + 2*x^2 + 3*x^3 + 8*x^4 + 4*x^5 + 2*x^6 + 3*x^8 - 12*x^9 - 3*x^10 + 3*x^12 - 3*x^13 + 6*x^14 + 3*x^15 - 3*x^16 + 2*x^18 - 2*x^19) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = 2*a(n-5) - a(n-10) for n > 20.
(End)

A293947 Sequence P(n) arising in the analysis of the Hofstadter "brother" sequence A284644.

Original entry on oeis.org

1, 3, 8, 19, 41, 85, 173, 349, 701, 1405, 2800, 5576, 11128, 22221, 44342, 88422, 176507, 352062, 702831, 1403235, 2802382, 5598862, 11185734, 22353592, 44674558
Offset: 1

Views

Author

N. J. A. Sloane, Oct 26 2017

Keywords

Crossrefs

A304622 a(n) = 11 - n for 1 <= n <= 10. Thereafter a(n) = a(n-a(n-2)) + a(n-a(n-4)).

Original entry on oeis.org

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 6, 8, 10, 15, 8, 13, 6, 14, 16, 9, 14, 13, 6, 14, 22, 18, 20, 16, 6, 23, 28, 15, 26, 22, 6, 29, 34, 15, 32, 28, 6, 35, 40, 15, 38, 34, 6, 41, 46, 15, 44, 40, 6, 47, 52, 15, 50, 46, 6, 53, 58, 15, 56, 52, 6, 59, 64, 15, 62, 58, 6, 65, 70, 15, 68, 64, 6, 71
Offset: 1

Views

Author

Altug Alkan, May 15 2018

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; procname(n-procname(n-2))+procname(n-procname(n-4)) end proc:
    for i from 1 to 10 do f(i):= 11-i od:
    map(f, [$1..100]); # Robert Israel, May 16 2018
  • PARI
    q=vector(10^5); for(n=1, 10, q[n]=10-n+1); for(n=11, #q, q[n]=q[n-q[n-2]]+ q[n-q[n-4]]); q

Formula

a(6*k-3) = 6*(k-1)-4, a(6*k-2) = 6*(k-2)-2, a(6*k-1) = 6, a(6*k) = 6*(k-1)-1, a(6*k+1) = 6*k-2, a(6*k+2) = 15 for k > 4.
Previous Showing 31-37 of 37 results.