cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 82 results. Next

A342671 a(n) = gcd(sigma(n), A003961(n)), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 21, 1, 3, 1, 15, 1, 3, 5, 1, 1, 3, 1, 9, 1, 3, 1, 1, 1, 3, 1, 9, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 3, 5, 3, 1, 21, 1, 3, 1, 1, 7, 3, 1, 9, 1, 3, 1, 15, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 5, 9, 1, 3, 1, 3, 1, 3, 1, 9, 1, 3, 13, 7, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2021

Keywords

Crossrefs

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349164, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A349756, A350071 [= a(n^2)], A355828 (Dirichlet inverse).
Cf. A349169, A349745, A355833, A355924 (applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));

Formula

a(n) = gcd(A000203(n), A003961(n)).
a(n) = gcd(A000203(n), A286385(n)) = gcd(A003961(n), A286385(n)).
a(n) = A341529(n) / A342672(n).
From Antti Karttunen, Jul 21 2022: (Start)
a(n) = A003961(n) / A349161(n).
a(n) = A000203(n) / A349162(n).
a(n) = A161942(n) / A348992(n).
a(n) = A003961(A349163(n)) = A003961(n/A349164(n)).
(End)

A249817 Permutation of natural numbers: a(1) = 1, a(n) = A083221(A055396(n),A246277(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 22, 23, 24, 25, 26, 21, 28, 29, 30, 31, 32, 39, 34, 35, 36, 37, 38, 63, 40, 41, 42, 43, 44, 33, 46, 47, 48, 49, 50, 75, 52, 53, 54, 65, 56, 99, 58, 59, 60, 61, 62, 57, 64, 95, 66, 67, 68, 111, 70, 71, 72, 73, 74, 51, 76, 77, 78, 79, 80, 45, 82, 83, 84, 155, 86, 135
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

a(n) tells which number in square array A083221 (the sieve of Eratosthenes) is at the same position where n is in array A246278. As both arrays have even numbers as their topmost row and primes as their leftmost column, both sequences are among the fixed points of this permutation.
Equally: a(n) tells which number in array A083140 is at the same position where n is in the array A246279, as they are the transposes of above two arrays.

Crossrefs

Inverse: A249818.
There are three different "deep" versions of this permutation, recursing on values of A055396(n) and/or A246277(n), namely: A250245, A250247 and A250249.
Other similar or related permutations: A249815.
Differs from its inverse A249818 for the first time at n=33, where a(33) = 39, while A249818(33) = 45.

Programs

  • Mathematica
    lim = 87; a083221 = Table[Take[Prime[n] Select[Range[Ceiling[lim/2]^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], Ceiling[lim/2]], {n, Ceiling[lim/2]}]; a055396[n_] PrimePi[FactorInteger[n][[1, 1]]]; a246277[n_] := Which[n == 1, 0, EvenQ@ n, n/2, True, a246277[Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ Transpose@ FactorInteger@ n, Last@ Transpose@ FactorInteger@ n]]]; Table[a083221[[a055396@ n, a246277@ n]], {n, 2, lim}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A055396 and Yasutoshi Kohmoto at A083140 *)
  • Scheme
    (define (A249817 n) (if (= 1 n) n (A083221bi (A055396 n) (A246277 n)))) ;; Code for A083221bi given in A083221
    ;; Alternative version:
    (define (A249817 n) (if (= 1 n) n (A083221bi (A055396 n) (A249821bi (A055396 n) (A078898 n))))) ;; Code for A249821bi given in A249821.

Formula

a(1) = 1, a(n) = A083221(A055396(n), A246277(n)).
a(1) = 1, a(n) = A083221(A055396(n), A249821(A055396(n), A078898(n))).
As a composition of other permutations:
a(1) = 1, and for n > 1, a(n) = 1 + A249815(n-1).
Other identities. For all n >= 1:
a(A005843(n)) = A005843(n) and a(A000040(n)) = A000040(n). [Fixes even numbers and primes, among other numbers. Cf. comments above].
A020639(a(n)) = A020639(n) and A055396(a(n)) = A055396(n). [Preserves the smallest prime factor of n].

A249821 Square array of permutations: A(row,col) = A246277(A083221(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... .

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 5, 3, 2, 1, 6, 4, 5, 3, 2, 1, 7, 7, 7, 5, 3, 2, 1, 8, 11, 11, 7, 5, 3, 2, 1, 9, 6, 13, 11, 7, 5, 3, 2, 1, 10, 13, 17, 13, 11, 7, 5, 3, 2, 1, 11, 17, 4, 17, 13, 11, 7, 5, 3, 2, 1, 12, 10, 19, 19, 17, 13, 11, 7, 5, 3, 2, 1, 13, 19, 23, 23, 19, 17, 13, 11, 7, 5, 3, 2, 1, 14, 9, 6, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2, 1, 15, 8, 29, 31, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

Permutation A249817 preserves the smallest prime factor of n, i.e., A055396(A249817(n)) = A055396(n), in other words, keeps all the terms that appear on any row of A246278 on the same row of A083221. Permutations in this table are induced by changes that A249817 does onto each row of the latter table, thus permutation on row r of this table can be used to sort row r of A246278 into ascending order. I.e., A246278(r, A(r,c)) = A083221(r,c) [the corresponding row in the Sieve of Eratosthenes, where each row appears in monotone order].
The multi-set of cycle-sizes of permutation A249817 is a disjoint union of cycle-sizes of all permutations in this array. For example, A249817 has a 7-cycle (33 39 63 57 99 81 45) which originates from the 7-cycle (6 7 11 10 17 14 8) of A064216, which occurs as the second row in this table.
On each row, 4 is the first composite number (and the first term less than previous, apart from row 1), and on row n it occurs in position A250474(n). This follows because A001222(A246277(n)) = A001222(n)-1 and because on each row of A083221 (see A083140) all terms between the square of prime (second term on each row) and the first cube (of the same prime, this cube mapping in this array to 4) are nonsquare semiprimes (A006881), this implies that the corresponding terms in this array must be primes.
Also, as the smaller prime factor of the terms on row n of A083221 is constant, A020639(n), and for all i < j: A246277(p_{i} * p_{j}) < A246277(p_i * p_{j+1}), the primes on any row appear in monotone order.

Examples

			The top left corner of the array:
1, 2, 3, 4, 5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...
1, 2, 3, 5, 4,  7, 11,  6, 13, 17, 10, 19,  9,  8, 23, 29, 14, 15, 31, ...
1, 2, 3, 5, 7, 11, 13, 17,  4, 19, 23,  6, 29, 31, 37, 41,  9, 43, 10, ...
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,  4, 41, 43, 47, 53, 59, ...
...
		

Crossrefs

Inverse permutations can be found from table A249822.
Row k+1 is a left-to-right composition of the first k rows of A251721.
Row 1: A000027 (an identity permutation), Row 2: A064216, Row 3: A249823, Row 4: A249825.
The initial growing part of each row converges towards A008578.

Programs

Formula

A(row,col) = A246277(A083221(row,col)).
A001222(A(row,col)) = A001222(A083221(row,col)) - 1. [This follows directly from the properties of A246277.]

A329050 Square array A(n,k) = prime(n+1)^(2^k), read by descending antidiagonals (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...; Fermi-Dirac primes (A050376) in matrix form, sorted into rows by their prime divisor.

Original entry on oeis.org

2, 4, 3, 16, 9, 5, 256, 81, 25, 7, 65536, 6561, 625, 49, 11, 4294967296, 43046721, 390625, 2401, 121, 13, 18446744073709551616, 1853020188851841, 152587890625, 5764801, 14641, 169, 17, 340282366920938463463374607431768211456, 3433683820292512484657849089281, 23283064365386962890625, 33232930569601, 214358881, 28561, 289, 19
Offset: 0

Views

Author

Antti Karttunen and Peter Munn, Nov 02 2019

Keywords

Comments

This sequence is a permutation of A050376, so every positive integer is the product of a unique subset, S_factors, of its terms. If we restrict S_factors to be chosen from a subset, S_0, consisting of numbers from specified rows and/or columns of this array, there are notable sequences among those that may be generated. See the examples. Other notable sequences can be generated if we restrict the intersection of S_factors with specific rows/columns to have even cardinality. In any of the foregoing cases, the numbers in the resulting sequence form a group under the binary operation A059897(.,.).
Shares with array A246278 the property that columns grow downward by iterating A003961, and indeed, this array can be obtained from A246278 by selecting its columns 1, 2, 8, 128, ..., 2^((2^k)-1), for k >= 0.
A(n,k) is the image of the lattice point with coordinates X=n and Y=k under the inverse of the bijection f defined in the first comment of A306697. This geometric relationship can be used to construct an isomorphism from the polynomial ring GF(2)[x,y] to a ring over the positive integers, using methods similar to those for constructing A297845 and A306697. See A329329, the ring's multiplicative operator, for details.

Examples

			The top left 5 X 5 corner of the array:
  n\k |   0     1       2           3                   4
  ----+-------------------------------------------------------
   0  |   2,    4,     16,        256,              65536, ...
   1  |   3,    9,     81,       6561,           43046721, ...
   2  |   5,   25,    625,     390625,       152587890625, ...
   3  |   7,   49,   2401,    5764801,     33232930569601, ...
   4  |  11,  121,  14641,  214358881,  45949729863572161, ...
Column 0 continues as a list of primes, column 1 as a list of their squares, column 2 as a list of their 4th powers, and so on.
Every nonnegative power of 2 (A000079) is a product of a unique subset of numbers from row 0; every squarefree number (A005117) is a product of a unique subset of numbers from column 0. Likewise other rows and columns generate the sets of numbers from sequences:
Row 1:                 A000244 Powers of 3.
Column 1:              A062503 Squares of squarefree numbers.
Row 2:                 A000351 Powers of 5.
Column 2:              A113849 4th powers of squarefree numbers.
Union of rows 0 and 1:     A003586 3-smooth numbers.
Union of columns 0 and 1:  A046100 Biquadratefree numbers.
Union of row 0 / column 0: A122132 Oddly squarefree numbers.
Row 0 excluding column 0:  A000302 Powers of 4.
Column 0 excluding row 0:  A056911 Squarefree odd numbers.
All rows except 0:         A005408 Odd numbers.
All columns except 0:      A000290\{0} Positive squares.
All rows except 1:         A001651 Numbers not divisible by 3.
All columns except 1:      A252895 (have odd number of square divisors).
If, instead of restrictions on choosing individual factors of the product, we restrict the product to be of an even number of terms from each row of the array, we get A262675. The equivalent restriction applied to columns gives us A268390; applied only to column 0, we get A028260 (product of an even number of primes).
		

Crossrefs

Transpose: A329049.
Permutation of A050376.
Rows 1-4: A001146, A011764, A176594, A165425 (after the two initial terms).
Antidiagonal products: A191555.
Subtable of A182944, A242378, A246278, A329332.
A000290, A003961, A225546 are used to express relationship between terms of this sequence.
Related binary operations: A059897, A306697, A329329.
See also the table in the example section.

Programs

  • Mathematica
    Table[Prime[#]^(2^k) &[m - k + 1], {m, 0, 7}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Dec 28 2019 *)
  • PARI
    up_to = 105;
    A329050sq(n,k) = (prime(1+n)^(2^k));
    A329050list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A329050sq(col, a-col))); (v); };
    v329050 = A329050list(up_to);
    A329050(n) = v329050[1+n];
    for(n=0,up_to-1,print1(A329050(n),", ")); \\ Antti Karttunen, Nov 06 2019

Formula

A(0,k) = 2^(2^k), and for n > 0, A(n,k) = A003961(A(n-1,k)).
A(n,k) = A182944(n+1,2^k).
A(n,k) = A329332(2^n,2^k).
A(k,n) = A225546(A(n,k)).
A(n,k+1) = A000290(A(n,k)) = A(n,k)^2.

Extensions

Example annotated for clarity by Peter Munn, Feb 12 2020

A242378 Square array read by antidiagonals: to obtain A(i,j), replace each prime factor prime(k) in prime factorization of j with prime(k+i).

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 5, 5, 1, 0, 5, 9, 7, 7, 1, 0, 6, 7, 25, 11, 11, 1, 0, 7, 15, 11, 49, 13, 13, 1, 0, 8, 11, 35, 13, 121, 17, 17, 1, 0, 9, 27, 13, 77, 17, 169, 19, 19, 1, 0, 10, 25, 125, 17, 143, 19, 289, 23, 23, 1, 0, 11, 21, 49, 343, 19, 221, 23, 361, 29, 29, 1, 0
Offset: 0

Views

Author

Antti Karttunen, May 12 2014

Keywords

Comments

Each row i is a multiplicative function, being in essence "the i-th power" of A003961, i.e., A(i,j) = A003961^i (j). Zeroth power gives an identity function, A001477, which occurs as the row zero.
The terms in the same column have the same prime signature.
The array is read by antidiagonals: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... .

Examples

			The top-left corner of the array:
  0,   1,   2,   3,   4,   5,   6,   7,   8, ...
  0,   1,   3,   5,   9,   7,  15,  11,  27, ...
  0,   1,   5,   7,  25,  11,  35,  13, 125, ...
  0,   1,   7,  11,  49,  13,  77,  17, 343, ...
  0,   1,  11,  13, 121,  17, 143,  19,1331, ...
  0,   1,  13,  17, 169,  19, 221,  23,2197, ...
...
A(2,6) = A003961(A003961(6)) = p_{1+2} * p_{2+2} = p_3 * p_4 = 5 * 7 = 35, because 6 = 2*3 = p_1 * p_2.
		

Crossrefs

Taking every second column from column 2 onward gives array A246278 which is a permutation of natural numbers larger than 1.
Transpose: A242379.
Row 0: A001477, Row 1: A003961 (from 1 onward), Row 2: A357852 (from 1 onward), Row 3: A045968 (from 7 onward), Row 4: A045970 (from 11 onward).
Column 2: A000040 (primes), Column 3: A065091 (odd primes), Column 4: A001248 (squares of primes), Column 6: A006094 (products of two successive primes), Column 8: A030078 (cubes of primes).
Excluding column 0, a subtable of A297845.
Permutations whose formulas refer to this array: A122111, A241909, A242415, A242419, A246676, A246678, A246684.

Formula

A(0,j) = j, A(i,0) = 0, A(i > 0, j > 0) = A003961(A(i-1,j)).
For j > 0, A(i,j) = A297845(A000040(i+1),j) = A297845(j,A000040(i+1)). - Peter Munn, Sep 02 2025

A257503 Square array A(row,col) read by antidiagonals: A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)); Dispersion of factorial base shift A255411 (array transposed).

Original entry on oeis.org

1, 2, 4, 3, 12, 18, 5, 16, 72, 96, 6, 22, 90, 480, 600, 7, 48, 114, 576, 3600, 4320, 8, 52, 360, 696, 4200, 30240, 35280, 9, 60, 378, 2880, 4920, 34560, 282240, 322560, 10, 64, 432, 2976, 25200, 39600, 317520, 2903040, 3265920, 11, 66, 450, 3360, 25800, 241920, 357840, 3225600, 32659200, 36288000, 13, 70, 456, 3456, 28800, 246240, 2540160, 3588480, 35925120, 399168000, 439084800
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The first row (A256450) contains all the numbers which have at least one 1-digit in their factorial base representation (see A007623), after which the successive rows are obtained from the terms on the row immediately above by shifting their factorial representation one left and then incrementing the nonzero digits in that representation with a factorial base shift-operation A255411.

Examples

			The top left corner of the array:
     1,     2,     3,     5,      6,      7,      8,      9,     10,     11,     13
     4,    12,    16,    22,     48,     52,     60,     64,     66,     70,     76
    18,    72,    90,   114,    360,    378,    432,    450,    456,    474,    498
    96,   480,   576,   696,   2880,   2976,   3360,   3456,   3480,   3576,   3696
   600,  3600,  4200,  4920,  25200,  25800,  28800,  29400,  29520,  30120,  30840
  4320, 30240, 34560, 39600, 241920, 246240, 272160, 276480, 277200, 281520, 286560
  ...
		

Crossrefs

Transpose: A257505.
Inverse permutation: A257504.
Row index: A257679, Column index: A257681.
Row 1: A256450, Row 2: A257692, Row 3: A257693.
Columns 1-3: A001563, A062119, A130744 (without their initial zero-terms).
Column 4: A213167 (without the initial one).
Column 5: A052571 (without initial zeros).
Cf. also permutations A255565 and A255566.
Thematically similar arrays: A083412, A135764, A246278.

Programs

Formula

A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)).

Extensions

Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016

A246675 Permutation of natural numbers: a(n) = A000079(A055396(n+1)-1) * ((2*A246277(n+1))-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 13, 10, 15, 64, 17, 128, 19, 18, 21, 256, 23, 12, 25, 14, 27, 512, 29, 1024, 31, 26, 33, 20, 35, 2048, 37, 42, 39, 4096, 41, 8192, 43, 22, 45, 16384, 47, 24, 49, 50, 51, 32768, 53, 36, 55, 66, 57, 65536, 59, 131072, 61, 38, 63, 52, 65, 262144, 67, 74, 69
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

Consider the square array A246278, and also A246275 which is obtained from the former when one is subtracted from each term.
In A246278 the even numbers occur at the top row, and all the rows below that contain only odd numbers, those subsequent terms in each column having been obtained by shifting all primes present in the prime factorization of number immediately above to one larger indices with A003961.
To compute a(n): we do the same process in reverse, by shifting primes in the prime factorization of n+1 step by step to smaller primes, until after k >= 0 such shifts with A064989, the result is even, with the smallest prime present being 2.
We subtract one from this even number and shift the binary expansion of the resulting odd number k positions left (i.e. multiply it with 2^k), which will be the result of a(n).
In the essence, a(n) tells which number in the array A135764 is at the same position where n is in the array A246275. As the topmost row in both arrays is A005408 (odd numbers), they are fixed, i.e., a(2n+1) = 2n+1 for all n.
A055396(n+1) tells on which row of A246275 n is, which is equal to the row of A246278 on which n+1 is.
A246277(n+1) tells in which column of A246275 n is, which is equal to the column of A246278 in which n+1 is.

Examples

			Consider 54 = 55-1. To find 55's position in array A246278, we start shifting its prime factorization 55 = 5 * 11 = p_3 * p_5, step by step: p_2 * p_4 (= 3 * 7 = 21), until we get an even number: p_1 * p_3 = 2*5 = 10.
This tells us that 55 is on row 3 and column 5 (= 10/2) of array A246278, thus 54 occurs in the same position at array A246275. In array A135764 the same position contains number (2^(3-1)) * (10-1) = 4*9 = 36, thus a(54) = 36.
		

Crossrefs

Inverse: A246676.
More recursed variants: A246677, A246683.
Even bisection halved: A246679.
Other related permutations: A054582, A135764, A246274, A246275, A246276.
a(n) differs from A156552(n+1) for the first time at n=13, where a(13) = 14, while A156552(14) = 17.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246675(n) = { my(k=0); n++; while((n%2), n = A064989(n); k++); n--; while(k>0, n = 2*n; k--); n; };
    for(n=1, 2048, write("b246675.txt", n, " ", A246675(n)));
    
  • Scheme
    (define (A246675 n) (* (A000079 (- (A055396 (+ 1 n)) 1)) (-1+ (* 2 (A246277 (+ 1 n))))))

Formula

a(n) = A000079(A055396(n+1)-1) * ((2*A246277(n+1))-1).
As a composition of related permutations:
a(n) = A135764(A246276(n)).
a(n) = A054582(A246274(n)-1).
Other identities. For all n >= 0:
a(A005408(n)) = A005408(n). [Fixes the odd numbers.]

A251721 Square array of permutations: A(row,col) = A249822(row, A249821(row+1, col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 3, 2, 1, 4, 4, 3, 2, 1, 7, 6, 4, 3, 2, 1, 11, 7, 5, 4, 3, 2, 1, 6, 9, 6, 5, 4, 3, 2, 1, 13, 10, 7, 6, 5, 4, 3, 2, 1, 17, 5, 8, 7, 6, 5, 4, 3, 2, 1, 10, 12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 19, 15, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 13, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 8, 16, 14, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 23, 19, 15, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2014

Keywords

Comments

These are the "first differences" between permutations of array A249821, in a sense that by composing the first k rows of this array [from left to right, as in a(n) = row_1(row_2(...(row_k(n))))], one obtains row k+1 of A249821.
On row n, the first A250473(n) terms are fixed, and the first non-fixed term comes at A250474(n).

Examples

			The top left corner of the array:
1, 2, 3, 5, 4, 7, 11, 6, 13, 17, 10, 19, 9, 8, 23, 29, 14, 15, 31, 22, ...
1, 2, 3, 4, 6, 7, 9, 10, 5, 12, 15, 8, 16, 19, 21, 22, 13, 24, 11, 27, ...
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 9, 16, 18, 20, 21, 23, 24, ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, ...
...
		

Crossrefs

Inverse permutations can be found from array A251722.
Row 1: A064216, Row 2: A249745, Row 3: A250475.

Programs

Formula

A(row,col) = A249822(row, A249821(row+1, col)).
A(row,col) = A078898(A246278(row, A246277(A083221(row+1, col)))).

A251722 Square array of permutations: A(row,col) = A249822(row+1, A249821(row, col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 3, 2, 1, 4, 4, 3, 2, 1, 8, 9, 4, 3, 2, 1, 6, 5, 5, 4, 3, 2, 1, 14, 6, 6, 5, 4, 3, 2, 1, 13, 12, 7, 6, 5, 4, 3, 2, 1, 11, 7, 8, 7, 6, 5, 4, 3, 2, 1, 7, 8, 14, 8, 7, 6, 5, 4, 3, 2, 1, 23, 19, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 17, 17, 21, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 18, 42, 11, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2014

Keywords

Comments

These are the "first differences" between permutations of array A249822, in a sense that by composing the first k rows of this array [from right to left, as in a(n) = row_k(...(row_2(row_1(n))))], one obtains row k+1 of A249822.
On row n the first non-fixed term is A250474(n+1) at position A250474(n), i.e., on row 1 it is 5 at n=4, on row 2 it is 9 at n=5, on row 3 it is 14 at n=9, etc. All the previous A250473(n) terms are fixed.

Examples

			The top left corner of the array:
1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, 41, 10, 38, 12, 32, ...
1, 2, 3, 4, 9, 5, 6, 12, 7, 8, 19, 10, 17, 42, 11, 13, 22, 26, 14, 29, ...
1, 2, 3, 4, 5, 6, 7, 8, 14, 9, 10, 21, 11, 12, 13, 15, 33, 16, 25, 17, ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 28, 14, 15, 16, 17, 18, 19, ...
...
		

Crossrefs

Inverse permutations can be found from array A251721.
Row 1: A048673, Row 2: A249746, Row 3: A250476.

Programs

Formula

A(row,col) = A249822(row+1, A249821(row, col)).
A(row,col) = A078898(A246278(row+1, A246277(A083221(row, col)))).

A256997 Square array A(row,col) read by antidiagonals: A(1,col) = A055938(col), and for row > 1, A(row,col) = A005187(A(row-1,col)).

Original entry on oeis.org

2, 5, 3, 6, 8, 4, 9, 10, 15, 7, 12, 16, 18, 26, 11, 13, 22, 31, 34, 49, 19, 14, 23, 41, 57, 66, 95, 35, 17, 25, 42, 79, 110, 130, 184, 67, 20, 32, 47, 81, 153, 215, 258, 364, 131, 21, 38, 63, 89, 159, 302, 424, 514, 723, 259, 24, 39, 73, 120, 174, 312, 599, 844, 1026, 1440, 515, 27, 46, 74, 143, 236, 343, 620, 1192, 1683, 2050, 2876, 1027
Offset: 2

Views

Author

Antti Karttunen, Apr 14 2015

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This is transpose of array A256995.
If we assume that a(1) = 1 (but which is not explicitly included here because outside of the array proper), then A256998 gives the inverse permutation.

Examples

			The top left corner of the array:
    2,    5,    6,    9,   12,   13,   14,   17,   20,   21,    24,    27
    3,    8,   10,   16,   22,   23,   25,   32,   38,   39,    46,    50
    4,   15,   18,   31,   41,   42,   47,   63,   73,   74,    88,    97
    7,   26,   34,   57,   79,   81,   89,  120,  143,  145,   173,   191
   11,   49,   66,  110,  153,  159,  174,  236,  281,  287,   341,   375
   19,   95,  130,  215,  302,  312,  343,  467,  558,  568,   677,   743
   35,  184,  258,  424,  599,  620,  680,  928, 1111, 1132,  1349,  1479
   67,  364,  514,  844, 1192, 1235, 1356, 1852, 2216, 2259,  2693,  2951
  131,  723, 1026, 1683, 2380, 2464, 2707, 3697, 4428, 4512,  5381,  5895
  259, 1440, 2050, 3360, 4755, 4924, 5408, 7387, 8851, 9020, 10757, 11783
  ...
		

Crossrefs

Cf. A005187, A055938 (row 1), A256994 (column 1), A256989 (row index), A256990 (column index).
Inverse: A256998.
Transpose: A256995.
Cf. also A254107, A255557 (variants), A246278 (another thematically similar construction).

Programs

Formula

A(1,col) = A055938(col), and for row > 1, A(row,col) = A005187(A(row-1,col)).
Previous Showing 41-50 of 82 results. Next