cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A250470 a(n) = A249817(A064989(A249818(n))).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 13, 4, 17, 3, 8, 7, 19, 2, 9, 11, 10, 5, 23, 6, 29, 1, 12, 13, 15, 4, 31, 17, 14, 3, 37, 10, 41, 7, 16, 19, 43, 2, 25, 9, 18, 11, 47, 8, 21, 5, 20, 23, 53, 6, 59, 29, 22, 1, 27, 14, 61, 13, 24, 15, 67, 4, 71, 31, 26, 17, 35, 22, 73, 3, 28, 37, 79, 10, 33, 41, 30, 7, 83, 12, 55, 19, 32, 43, 39, 2, 89, 25, 34, 9, 97, 26, 101
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2014

Keywords

Comments

Odd bisection, A250472, is a permutation of natural numbers. A250479 gives the even bisection.
For odd numbers n >= 3, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)-1. In other words, a(n) tells which number is located immediately above n in the sieve of Eratosthenes (see A083140, A083221) in the same column of the sieve that contains n.

Crossrefs

Odd bisection: A250472.
Even bisection: A250479.
Differs from A064989 for the first time at n=21, where a(21) = 8, while
A064989(21) = 10.

Programs

Formula

a(n) = A249817(A064989(A249818(n))).
Other identities. For all n >= 1:
a(A250469(n)) = n. [This is an inverse function for injection A250469.]
For all odd numbers n >= 3: A055396(a(n)) = A055396(n)-1.

A280497 a(n) = A032742(A249817(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 9, 11, 1, 12, 5, 13, 7, 14, 1, 15, 1, 16, 13, 17, 7, 18, 1, 19, 21, 20, 1, 21, 1, 22, 11, 23, 1, 24, 7, 25, 25, 26, 1, 27, 13, 28, 33, 29, 1, 30, 1, 31, 19, 32, 19, 33, 1, 34, 37, 35, 1, 36, 1, 37, 17, 38, 11, 39, 1, 40, 15, 41, 1, 42, 31, 43, 45, 44, 1, 45, 17, 46, 57, 47, 37, 48, 1, 49, 27, 50, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Crossrefs

Differs from related A280496 and A280498 for the first time at n=33, where a(33) = 13, while A280496(33) = A280498(33) = 15.
Differs from related A280495 for the first time at n=42, where a(42) = 21, while A280495(42) = 27.

Programs

Formula

a(n) = A032742(A249817(n)).
a(n) = A249817(n) / A020639(n). [Because A249817 preserves the smallest prime factor of n.]

A279351 Permutation of natural numbers: a(n) = A249817(A122111(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 14, 21, 96, 25, 40, 1024, 30, 2048, 11, 72, 192, 54, 27, 4096, 384, 144, 28, 8192, 60, 16384, 80, 50, 768, 32768, 22, 45, 33, 288, 160, 65536, 35, 108, 56, 576, 1536, 131072, 42, 262144, 3072, 100, 13, 216, 120, 524288, 320, 1152, 90, 1048576, 39
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2016

Keywords

Crossrefs

Inverse: A279352.

Formula

a(n) = A249817(A122111(n)).

A279355 Permutation of natural numbers: a(n) = A249817(A241909(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 16, 5, 6, 21, 32, 25, 64, 45, 18, 7, 128, 15, 256, 55, 54, 93, 512, 49, 12, 189, 10, 115, 1024, 51, 2048, 11, 162, 381, 36, 35, 4096, 765, 486, 91, 8192, 159, 16384, 235, 50, 1533, 32768, 121, 24, 33, 1458, 475, 65536, 27, 108, 203, 4374, 3069, 131072, 125, 262144, 6141, 250, 13, 324, 483, 524288, 955, 13122, 105, 1048576, 77
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2016

Keywords

Crossrefs

Inverse: A279356.

Formula

a(n) = A249817(A241909(n)).

A064989 Multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 13, 4, 17, 3, 10, 7, 19, 2, 9, 11, 8, 5, 23, 6, 29, 1, 14, 13, 15, 4, 31, 17, 22, 3, 37, 10, 41, 7, 12, 19, 43, 2, 25, 9, 26, 11, 47, 8, 21, 5, 34, 23, 53, 6, 59, 29, 20, 1, 33, 14, 61, 13, 38, 15, 67, 4, 71, 31, 18, 17, 35, 22, 73, 3, 16
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

From Antti Karttunen, May 12 2014: (Start)
a(A003961(n)) = n for all n. [This is a left inverse function for the injection A003961.]
Bisections are A064216 (the terms at odd indices) and A064989 itself (the terms at even indices), i.e., a(2n) = a(n) for all n.
(End)
From Antti Karttunen, Dec 18-21 2014: (Start)
When n represents an unordered integer partition via the indices of primes present in its prime factorization (for n >= 2, n corresponds to the partition given as the n-th row of A112798) this operation subtracts one from each part. If n is of the form 2^k (a partition having just k 1's as its parts) the result is an empty partition (which is encoded by 1, having an "empty" factorization).
For all odd numbers n >= 3, a(n) tells which number is located immediately above n in square array A246278. Cf. also A246277.
(End)
Alternatively, if numbers are represented as the multiset of indices of prime factors with multiplicity, this operation subtracts 1 from each element and discards the 0's. - M. F. Hasler, Dec 29 2014

Examples

			a(20) = a(2^2*5) = a(2^2)*a(5) = prevprime(5) = 3.
		

Crossrefs

Cf. A064216 (odd bisection), A003961 (inverse), A151799.
Other sequences whose definition involve or are some other way related with this sequence: A105560, A108951, A118306, A122111, A156552, A163511, A200746, A241909, A243070, A243071, A243072, A243073, A244319, A245605, A245607, A246165, A246266, A246268, A246277, A246278, A246361, A246362, A246371, A246372, A246373, A246374, A246376, A246380, A246675, A246682, A249745, A250470.
Similar prime-shifts towards smaller numbers: A252461, A252462, A252463.

Programs

  • Haskell
    a064989 1 = 1
    a064989 n = product $ map (a008578 . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A064989 n) (if (= 1 n) n (apply * (map (lambda (k) (if (zero? k) 1 (A000040 k))) (map -1+ (map A049084 (factor n)))))))
    ;; Antti Karttunen, May 12 2014
    (definec (A064989 n) (if (= 1 n) n (* (A008578 (A055396 n)) (A064989 (A032742 n))))) ;; One based on given recurrence and utilizing memoizing definec-macro.
    (definec (A064989 n) (cond ((= 1 n) n) ((even? n) (A064989 (/ n 2))) (else (A163511 (/ (- (A243071 n) 1) 2))))) ;; Corresponds to one of the alternative formulas, but is very unpractical way to compute this sequence. - Antti Karttunen, Dec 18 2014
    
  • Maple
    q:= proc(p) prevprime(p) end proc: q(2):= 1:
    [seq(mul(q(f[1])^f[2], f = ifactors(n)[2]), n = 1 .. 1000)]; # Robert Israel, Dec 21 2014
  • Mathematica
    Table[Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n, {n, 81}] (* Michael De Vlieger, Jan 04 2016 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=1; j=1; if (n>1 && f[1, 1]==2, j=2); for (i=j, length(f), a*=precprime(f[1, i] - 1)^f[2, i]); write("b064989.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
    
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((p=f[i,1]) % 2, f[i,1] = precprime(p-1), f[i,1] = 1);); factorback(f);} \\ Michel Marcus, Dec 18 2014
    
  • PARI
    A064989(n)=factorback(Mat(apply(t->[max(precprime(t[1]-1),1),t[2]],Vec(factor(n)~))~)) \\ M. F. Hasler, Dec 29 2014
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
    
  • Python
    from math import prod
    from sympy import prevprime, factorint
    def A064989(n): return prod(prevprime(p)**e for p, e in  factorint(n>>(~n&n-1).bit_length()).items()) # Chai Wah Wu, Jan 05 2023

Formula

From Antti Karttunen, Dec 18 2014: (Start)
If n = product A000040(k)^e(k) then a(n) = product A008578(k)^e(k) [where A000040(n) gives the n-th prime, and A008578(n) gives 1 for 1 and otherwise the (n-1)-th prime].
a(1) = 1; for n > 1, a(n) = A008578(A055396(n)) * a(A032742(n)). [Above formula represented as a recurrence. Cf. A252461.]
a(1) = 1; for n > 1, a(n) = A008578(A061395(n)) * a(A052126(n)). [Compare to the formula of A252462.]
This prime-shift operation is used in the definitions of many other sequences, thus it can be expressed in many alternative ways:
a(n) = A200746(n) / n.
a(n) = A242424(n) / A105560(n).
a(n) = A122111(A122111(n)/A105560(n)) = A122111(A052126(A122111(n))). [In A112798-partition context: conjugate, remove the largest part (the largest prime factor), and conjugate again.]
a(1) = 1; for n > 1, a(2n) = a(n), a(2n+1) = A163511((A243071(2n+1)-1) / 2).
a(n) = A249818(A250470(A249817(n))). [A250470 is an analogous operation for "going one step up" in the square array A083221 (A083140).]
(End)
Product_{k=1..n} a(k) = n! / A307035(n). - Vaclav Kotesovec, Mar 21 2019
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) = 0.220703928... , where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Nov 18 2022

A246277 Column index of n in A246278: a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 15, 1, 16, 7, 17, 3, 18, 1, 19, 11, 20, 1, 21, 1, 22, 6, 23, 1, 24, 2, 25, 13, 26, 1, 27, 5, 28, 17, 29, 1, 30, 1, 31, 10, 32, 7, 33, 1, 34, 19, 35, 1, 36, 1, 37, 9, 38, 3, 39, 1, 40, 8, 41, 1, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

If n >= 2, n occurs in column a(n) of A246278.
By convention, a(1) = 0 because 1 does not occur in A246278.

Crossrefs

Terms of A348717 halved. A305897 is the restricted growth sequence transform.
Positions of terms 1 .. 8 in this sequence are given by the following sequences: A000040, A001248, A006094, A030078, A090076, A251720, A090090, A030514.
Cf. A078898 (has the same role with array A083221 as this sequence has with A246278).
This sequence is also used in the definition of the following permutations: A246274, A246276, A246675, A246677, A246683, A249815, A249817 (A249818), A249823, A249825, A250244, A250245, A250247, A250249.
Also in the definition of arrays A249821, A251721, A251722.
Sum of prime indices of a(n) is A359358(n) + A001222(n) - 1, cf. A326844.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    a246277[n_Integer] := Module[{f, p, a064989, a},
      f[x_] := Transpose@FactorInteger[x];
      p[x_] := Which[
        x == 1, 1,
        x == 2, 1,
        True, NextPrime[x, -1]];
      a064989[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]];
      a[1] = 0;
      a[x_] := If[EvenQ[x], x/2, NestWhile[a064989, x, OddQ]/2];
    a/@Range[n]]; a246277[84] (* Michael De Vlieger, Dec 19 2014 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
    
  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2); \\ Antti Karttunen, Apr 30 2022
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a(n): return 0 if n==1 else n//2 if n%2==0 else a(a064989(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; two different variants, the second one employing memoizing definec-macro)
    (define (A246277 n) (if (= 1 n) 0 (let loop ((n n)) (if (even? n) (/ n 2) (loop (A064989 n))))))
    (definec (A246277 n) (cond ((= 1 n) 0) ((even? n) (/ n 2)) (else (A246277 (A064989 n)))))
    

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)) = a(A064216(n+1)). [Cf. the formula for A252463.]
Instead of the equation for a(2n+1) above, we may write a(A003961(n)) = a(n). - Peter Munn, May 21 2022
Other identities. For all n >= 1, the following holds:
For all w >= 0, a(p_{i} * p_{j} * ... * p_{k}) = a(p_{i+w} * p_{j+w} * ... * p_{k+w}).
For all n >= 2, A001222(a(n)) = A001222(n)-1. [a(n) has one less prime factor than n. Thus each semiprime (A001358) is mapped to some prime (A000040), etc.]
For all n >= 2, a(n) = A078898(A249817(n)).
For semiprimes n = p_i * p_j, j >= i, a(n) = A000040(1+A243055(n)) = p_{1+j-i}.
a(n) = floor(A348717(n)/2). - Antti Karttunen, Apr 30 2022
If n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=2..k} prime(x_i-x_1+1). The opposite version is A358195, prime indices A358172, even bisection A241916. - Gus Wiseman, Dec 29 2022

A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 21, 35, 49, 11, 12, 27, 55, 77, 121, 13, 14, 33, 65, 91, 143, 169, 17, 16, 39, 85, 119, 187, 221, 289, 19, 18, 45, 95, 133, 209, 247, 323, 361, 23, 20, 51, 115, 161, 253, 299, 391, 437, 529, 29, 22, 57, 125, 203, 319, 377, 493, 551, 667
Offset: 2

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

This is permutation of natural numbers larger than 1.
From Antti Karttunen, Dec 19 2014: (Start)
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252460 gives an inverse permutation. See also A249741.
For navigating in this array:
A055396(n) gives the row number of row where n occurs, and A078898(n) gives its column number, both starting their indexing from 1.
A250469(n) gives the number immediately below n, and when n is an odd number >= 3, A250470(n) gives the number immediately above n. If n is a composite, A249744(n) gives the number immediately left of n.
First cube of each row, which is {the initial prime of the row}^3 and also the first number neither a prime or semiprime, occurs on row n at position A250474(n).
(End)
The n-th row contains the numbers whose least prime factor is the n-th prime: A020639(T(n,k)) = A000040(n). - Franklin T. Adams-Watters, Aug 07 2015

Examples

			The top left corner of the array:
   2,   4,   6,    8,   10,   12,   14,   16,   18,   20,   22,   24,   26
   3,   9,  15,   21,   27,   33,   39,   45,   51,   57,   63,   69,   75
   5,  25,  35,   55,   65,   85,   95,  115,  125,  145,  155,  175,  185
   7,  49,  77,   91,  119,  133,  161,  203,  217,  259,  287,  301,  329
  11, 121, 143,  187,  209,  253,  319,  341,  407,  451,  473,  517,  583
  13, 169, 221,  247,  299,  377,  403,  481,  533,  559,  611,  689,  767
  17, 289, 323,  391,  493,  527,  629,  697,  731,  799,  901, 1003, 1037
  19, 361, 437,  551,  589,  703,  779,  817,  893, 1007, 1121, 1159, 1273
  23, 529, 667,  713,  851,  943,  989, 1081, 1219, 1357, 1403, 1541, 1633
  29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117
  ...
		

Crossrefs

Transpose of A083140.
One more than A249741.
Inverse permutation: A252460.
Column 1: A000040, Column 2: A001248.
Row 1: A005843, Row 2: A016945, Row 3: A084967, Row 4: A084968, Row 5: A084969, Row 6: A084970.
Main diagonal: A083141.
First semiprime in each column occurs at A251717; A251718 & A251719 with additional criteria. A251724 gives the corresponding semiprimes for the latter. See also A251728.
Permutations based on mapping numbers between this array and A246278: A249817, A249818, A250244, A250245, A250247, A250249. See also: A249811, A249814, A249815.
Also used in the definition of the following arrays of permutations: A249821, A251721, A251722.

Programs

  • Mathematica
    lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* Michael De Vlieger, Jan 04 2016, after Yasutoshi Kohmoto at A083140 *)

Extensions

More terms from Hugo Pfoertner, Jun 13 2003

A250469 a(1) = 1; and for n > 1, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1, where A055396(n) is the index of smallest prime dividing n.

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 21, 25, 27, 13, 33, 17, 39, 35, 45, 19, 51, 23, 57, 55, 63, 29, 69, 49, 75, 65, 81, 31, 87, 37, 93, 85, 99, 77, 105, 41, 111, 95, 117, 43, 123, 47, 129, 115, 135, 53, 141, 121, 147, 125, 153, 59, 159, 91, 165, 145, 171, 61, 177, 67, 183, 155, 189, 119, 195, 71, 201, 175, 207, 73, 213, 79, 219, 185, 225, 143, 231, 83, 237, 205, 243, 89, 249, 133, 255
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2014

Keywords

Comments

Permutation of odd numbers.
For n >= 2, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1. In other words, a(n) tells which number is located immediately below n in the sieve of Eratosthenes (see A083140, A083221) in the same column of the sieve that contains n.
A250471(n) = (a(n)+1)/2 is a permutation of natural numbers.
Coincides with A003961 in all terms which are primes. - M. F. Hasler, Sep 17 2016. Note: primes are a proper subset of A280693 which gives all n such that a(n) = A003961(n). - Antti Karttunen, Mar 08 2017

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]]; Array[a, 100] (* Jean-François Alcover, Mar 08 2016 *)
    g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1] &, #] &@ Map[Position[Lookup[s, g@#], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 08 2017, Version 10 *)

Formula

a(1) = 1, a(n) = A083221(A055396(n)+1, A078898(n)).
a(n) = A249817(A003961(A249818(n))).
Other identities. For all n >= 1:
A250470(a(n)) = A268674(a(n)) = n. [A250470 and A268674 provide left inverses for this function.]
a(2n) = A016945(n-1). [Maps even numbers to the numbers of form 6n+3, in monotone order.]
a(A016945(n-1)) = A084967(n). [Which themselves are mapped to the terms of A084967, etc. Cf. the Example section of A083140.]
a(A000040(n)) = A000040(n+1). [Each prime is mapped to the next prime.]
For all n >= 2, A055396(a(n)) = A055396(n)+1. [A more general rule.]
A046523(a(n)) = A283465(n). - Antti Karttunen, Mar 08 2017

A249818 Permutation of natural numbers: a(1) = 1, a(n) = A246278(A055396(n),A078898(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 22, 23, 24, 25, 26, 21, 28, 29, 30, 31, 32, 45, 34, 35, 36, 37, 38, 33, 40, 41, 42, 43, 44, 81, 46, 47, 48, 49, 50, 75, 52, 53, 54, 125, 56, 63, 58, 59, 60, 61, 62, 39, 64, 55, 66, 67, 68, 135, 70, 71, 72, 73, 74, 51, 76, 77, 78, 79, 80, 99, 82, 83, 84, 175, 86, 105
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

a(n) tells which number in square array A246278 is at the same position where n is in array A083221, the sieve of Eratosthenes. As both arrays have even numbers as their topmost row and primes as their leftmost column, both sequences are among the fixed points of this permutation.
Equally: a(n) tells which number in array A246279 is at the same position where n is in the array A083140, as they are the transposes of above two arrays.

Crossrefs

Inverse: A249817.
There are three different "deep" versions of this permutation, recursing on values of A055396(n) and/or A078898(n), namely: A250246, A250248 and A250250.
Other similar or related permutations: A249816.
Differs from its inverse A249817 for the first time at n=33, where a(33) = 45, while A249817(33) = 39.

Programs

  • Mathematica
    lim = 87; a003961[p_?PrimeQ] := a003961[p] = Prime[PrimePi@ p + 1]; a003961[1] = 1; a003961[n_] :=  a003961[n] = Times @@ (a003961[First@ #]^Last@ # &) /@ FactorInteger@ n; a055396[n_] := PrimePi[FactorInteger[n][[1, 1]]]; a078898 = Block[{nn = 90, spfs}, spfs = Table[FactorInteger[n][[1, 1]], {n, nn}]; Table[Count[Take[spfs, i], spfs[[i]]], {i, nn}]]; a246278 = NestList[Map[a003961, #] &, Table[2 k, {k, lim}], lim]; Table[a246278[[a055396@ n, a078898[[n]]]], {n, 2, lim}]
    (* Michael De Vlieger, Jan 04 2016, after Harvey P. Dale at A055396 and A078898 *)

Formula

a(1) = 1, a(n) = A246278(A055396(n), A078898(n)).
a(1) = 1, a(n) = A246278(A055396(n), A249822(A055396(n), A246277(n))).
As a composition of other permutations:
a(1) = 1, and for n > 1, a(n) = 1 + A249816(n-1).
Other identities. For all n >= 1:
a(A005843(n)) = A005843(n) and a(A000040(n)) = A000040(n). [Fixes even numbers and primes, among other numbers. Cf. comments above].
A020639(a(n)) = A020639(n) and A055396(a(n)) = A055396(n). [Preserves the smallest prime factor of n].

A250245 Permutation of natural numbers: a(1) = 1, a(n) = A083221(A055396(n),a(A246277(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 22, 23, 24, 25, 26, 21, 28, 29, 30, 31, 32, 39, 34, 35, 36, 37, 38, 63, 40, 41, 54, 43, 44, 33, 46, 47, 48, 49, 50, 75, 52, 53, 42, 65, 56, 99, 58, 59, 60, 61, 62, 57, 64, 95, 78, 67, 68, 111, 70, 71, 72, 73, 74, 51, 76, 77, 126, 79, 80, 45, 82
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2014

Keywords

Comments

The first 7-cycle occurs at: (33 39 63 57 99 81 45) which is mirrored by the cycle (66 78 126 114 198 162 90) with double-size terms.
The cycle which contains 55 as its smallest term, goes as: 55, 65, 95, 185, 425, 325, 205, 455, 395, 1055, 2945, 6035, 30845, ...
while to the other direction (A250246) it goes as: 55, 125, 245, 115, 625, 8575, 40375, ...
The cycle which contains 69 as its smallest term, goes as: 69, 111, 183, 351, 261, 273, 387, 489, 939, 1863, 909, 1161, 981, 1281, 4167, ...
while to the other direction (A250246) it goes as: 69, 135, 87, 105, 225, 207, 231, 195, 525, 1053, 3159, 24909, ...

Crossrefs

Inverse: A250246.
Other similar permutations: A250244, A250247, A250249, A243071, A252755.
Differs from the "vanilla version" A249817 for the first time at n=42, where a(42) = 54, while A249817(42) = 42.
Differs from A250246 for the first time at n = 33, where a(33) = 39, while A250246(33) = 45.
Differs from A250249 for the first time at n=73, where a(73) = 73, while A250249(73) = 103.

Formula

a(1) = 1, a(n) = A083221(A055396(n), a(A246277(n))).
a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A250469(a(A064989(2n+1))). - Antti Karttunen, Jan 18 2015
As a composition of related permutations:
a(n) = A252755(A243071(n)).
Other identities. For all n >= 1:
a(n) = a(2n)/2. [The even bisection halved gives the sequence back.]
A020639(a(n)) = A020639(n) and A055396(a(n)) = A055396(n). [Preserves the smallest prime factor of n].
Showing 1-10 of 23 results. Next