cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A252737 Row sums of irregular tables A005940, A163511, and A332977.

Original entry on oeis.org

1, 2, 7, 28, 130, 702, 4384, 31516, 260068, 2445372, 25796360, 299286550, 3751803964, 50211590696, 712746859372, 10697637496288, 169490803535680, 2830925427778810, 49785906936838240, 921273098388684878, 17944637546960083042, 368472898102440537484, 7993616254370783660414, 183539682466936703629744
Offset: 0

Views

Author

Antti Karttunen, Dec 21 2014

Keywords

Crossrefs

Row sums of tables A005940, A163511, and A332977.
Cf. A252738 (row products).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-`if`(
          i=0, j, 1), j)*ithprime(j), j=1..`if`(i=0, n, i)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Mar 04 2020
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - If[i == 0, j, 1], j]* Prime[j], {j, 1, If[i == 0, n, i]}]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jan 03 2022, after Alois P. Heinz *)
  • PARI
    allocatemem(234567890);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A252737print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 1, if(1 == n, s = 2; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 0; for(i = 0, (2^(n-1))-1, lev[i+1] = if((i%2),A003961(oldlev[(i\2)+1]),2*oldlev[(i\2)+1]); s += lev[i+1]))); write("b252737.txt", n, " ", s)); };
    A252737print(23); \\ Terms a(0) .. a(23) were computed with this program.
    
  • Scheme
    (define (A252737 n) (if (zero? n) 1 (add A163511 (A000079 (- n 1)) (A000225 n))))
    
  • Scheme
    (define (A252737 n) (if (zero? n) 1 (add (COMPOSE A005940 1+) (A000079 (- n 1)) (A000225 n))))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
    (define (COMPOSE . funlist) (cond ((null? funlist) (lambda (x) x)) (else (lambda (x) ((car funlist) ((apply COMPOSE (cdr funlist)) x))))))

Formula

a(0) = 1; for n>1: a(n) = Sum_{k = A000079(n-1) .. A000225(n)} A163511(k) = Sum_{k = 2^(n-1) .. (2^n)-1} A163511(k).

A267096 a(n) = Product_{i=0..n} prime(i+2)^binomial(n,i).

Original entry on oeis.org

3, 15, 525, 1414875, 41985913344375, 433555011900329243987584396875, 3514495551481947615680580256869117013417604971088496013610671875
Offset: 0

Views

Author

Antti Karttunen, Feb 06 2016

Keywords

Examples

			Terms are obtained by exponentiating the odd primes in range [3 .. prime(2+n)] with the binomial coefficients obtained from row n of Pascal's triangle (A007318) and then multiplying the factors together:
            3^1
         3^1 * 5^1
      3^1 * 5^2 * 7^1
   3^1 * 5^3 * 7^3 * 11^1
3^1 * 5^4 * 7^6 * 11^4 * 13^1
etc.
		

Crossrefs

Second column (or diagonal from right) in A066117.

Programs

  • Scheme
    (define (A267096 n) (mul (lambda (k) (expt (A000040 (+ 2 k)) (A007318tr n k))) 0 n)) ;; Where A007318tr gives binomial coefficients, as in A007318.
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (1+ i) (* res (intfun i)))))))

Formula

a(n) = Product_{i=0..n} prime(i+2)^C(n,i).
a(n) = A003961(A007188(n)).

A332977 Triangle T(n,k) read by rows in which n-th row lists in increasing order all integers m satisfying Omega(m) + pi(gpf(m)) - [m<>1] = n; n>=0, 1<=k<=A011782(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 7, 10, 12, 15, 16, 18, 25, 27, 11, 14, 20, 21, 24, 30, 32, 35, 36, 45, 49, 50, 54, 75, 81, 125, 13, 22, 28, 33, 40, 42, 48, 55, 60, 63, 64, 70, 72, 77, 90, 98, 100, 105, 108, 121, 135, 147, 150, 162, 175, 225, 243, 245, 250, 343, 375, 625
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2020

Keywords

Comments

Integer m > 0 is listed in row n if the index of the largest prime factor of m (or 0 for empty prime factor set) plus the cardinality of the other prime factors of m (counted with multiplicity) equals n.
Row n+k-1 contains prime(n)^k (for all n, k >= 1).
The concatenation of all rows (with offset 1) gives a permutation of the natural numbers A000027 with fixed points 1, 2, 3, 4, 5, 6, 10, ... and inverse permutation A332990.
This is a variant with sorted rows of A005940 (offset differs) or A163511.

Examples

			Triangle T(n,k) begins:
   1;
   2;
   3,  4;
   5,  6,  8,  9;
   7, 10, 12, 15, 16, 18, 25, 27;
  11, 14, 20, 21, 24, 30, 32, 35, 36, 45, 49, 50, 54, 75, 81, 125;
  ...
		

Crossrefs

Columns k=1-2 give: A008578(n+1), A100484(n-1) for n>1.
Last elements of rows give A332979.
Row sums give A252737.
Product of row elements give A252738.
Row lengths give A011782.
Cf. A000027, A000040, A000720 (pi), A001222 (Omega), A006530 (GPF), A060576 ([n<>1]), A061395 (pi(gpf(n))), A215366, A332990.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1], sort([seq(map(x-> x*
          ithprime(j), b(n-`if`(i=0, j, 1), j))[], j=1..`if`(i=0, n, i))]))
        end:
    T:= n-> b(n, 0)[]:
    seq(T(n), n=0..7);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1}, Sort[Flatten[Table[#*
        Prime[j]& /@ b[n-If[i == 0, j, 1], j], {j, 1, If[i == 0, n, i]}]]]];
    T[n_] := b[n, 0];
    T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Mar 30 2021, after Alois P. Heinz *)

A253788 Row products of irregular tables A252753 & A252755.

Original entry on oeis.org

1, 2, 12, 2160, 1905120000, 1034766105221882880000000, 139870330430486189977277369128961542673635737600000000000000
Offset: 0

Views

Author

Antti Karttunen, Jan 13 2015

Keywords

Crossrefs

Cf. A253787 (the corresponding sums).

Programs

  • Scheme
    (define (A253788 n) (if (zero? n) 1 (mul A252753 (A000079 (- n 1)) (A000225 n))))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))

Formula

a(0) = 1; for n>1: a(n) = Product_{k = A000079(n-1) .. A000225(n)} A252753(k) = Product_{k = 2^(n-1) .. (2^n)-1} A252753(k).

A276804 Second column T[.,2] of array T = A255483: T[0,j] = prime(j), T[i+1,j] = T[i,j]*T[i,j+1]/gcd(T[i,j],T[i,j+1])^2, i >= 0, j >= 1.

Original entry on oeis.org

3, 15, 21, 1155, 39, 3315, 5187, 111546435, 87, 13485, 22533, 1575169365, 48633, 6022953885, 12684118629, 961380175077106319535, 183, 61305, 90951, 24466273755, 187941, 88836891585, 157950690807, 133754519645521334494935, 536007, 573342567585
Offset: 0

Views

Author

M. F. Hasler, Sep 17 2016

Keywords

Comments

By construction all terms are divisible by 3, and the n-th term a(n-1) is divisible by prime(n+1). We have a(n)/3 = (1, 5, 7, 385, 13, 1105, 1729, 37182145, 29, 4495, ...). Neither the sequence of primes appearing here, (5, 7, 13, 29, 61, ...), nor its complement in the primes, ([2, 3,] 11, 17, 19, 23, 31, 37, 41, 43, 47, 53, 59, 67, ...), seem to be listed in the OEIS.
This is also the multiplicative encoding of Pascal's triangle in Z_2 (A047999), shifted by prefixing an initial 0 to the n-th row; e.g., n=2 => 1,0,1 => 0,1,0,1 => 2^0 * 3^1 * 5^0 * 7^1 = a(2).

Crossrefs

Cf. A255483 (the square array T), A123098 (first column of T), A003961.

Programs

  • PARI
    A276804(n)=prod(j=0, n, if(bitand(n-j, j), 1, prime(j+2)))

Formula

a(n) = A003961(A123098(n)).
a(n) = Prod_{j=0..n} prime(j+2)^(!(n-j & j)), where ! is "not" (=0 for nonzero and 1 for zero) and & is bitwise AND.
a(n) = A007913(A267096(n)) = A007913(A252738(n+2)). - Antti Karttunen, Sep 18 2016
Previous Showing 11-15 of 15 results.