cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A034347 Number of binary [ n,6 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 25, 99, 385, 1472, 5676, 22101, 87404, 350097, 1413251, 5708158, 22903161, 90699398, 352749035, 1342638839, 4990325414, 18090636016, 63933709870, 220277491298, 740170023052, 2426954735273, 7770739437179, 24314436451415, 74406425640743, 222867051758565, 653898059035166
Offset: 1

Views

Author

Keywords

Crossrefs

First differences of A034360.
Column k = 6 of A034253.

Programs

  • SageMath
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 6 (this sequence) gives
    print(A034253col(6, 30)) # Petros Hadjicostas, Oct 05 2019

Extensions

More terms from Petros Hadjicostas, Oct 05 2019

A034348 Number of binary [ n,7 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 7, 35, 170, 847, 4408, 24297, 143270, 901491, 5985278, 41175203, 287813284, 2009864185, 13848061942, 93369988436, 613030637339, 3908996099141, 24179747870890, 145056691643428, 844229016035010, 4769751989333029, 26181645303024760, 139750488576152520
Offset: 1

Views

Author

Keywords

Comments

To find the g.f., modify the Sage program below (cf. function f). It is very complicated to write it here. - Petros Hadjicostas, Oct 05 2019

Crossrefs

Column k=7 of A034253 and first differences of A034361.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 7 (this sequence) gives
    print(A034253col(7, 30)) #

Extensions

More terms from Petros Hadjicostas, Oct 05 2019

A034349 Number of binary [ n,8 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 8, 47, 277, 1775, 12616, 102445, 957357, 10174566, 119235347, 1482297912, 18884450721, 240477821389, 3012879828566, 36800049400028, 436068618826236, 5001537857507095, 55482177298724426, 595303034603214108, 6181562837200509792, 62170512250565592346
Offset: 1

Views

Author

Keywords

Comments

To find the g.f., modify the Sage program below (cf. function f). It is very complicated to write it here. - Petros Hadjicostas, Oct 07 2019

Crossrefs

Column k=8 of A034253 and first differences of A034362.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 8 (current sequence) gives
    print(A034253col(8, 30)) # Petros Hadjicostas, Oct 07 2019

Extensions

More terms from Petros Hadjicostas, Oct 07 2019

A342059 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of 2-connected planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 3, k=2..2*n-4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 2, 1, 1, 3, 17, 31, 22, 6, 2, 1, 4, 42, 157, 318, 265, 123, 26, 6, 1, 6, 87, 576, 2128, 4009, 4055, 2332, 804, 147, 17, 1, 7, 161, 1664, 9659, 31252, 59244, 66289, 46521, 20604, 5743, 892, 73, 1, 9, 286, 4151, 34700, 168757, 505410, 952044, 1156127, 931227, 506318, 183980, 43180, 5876, 389
Offset: 3

Views

Author

Andrew Howroyd, Mar 27 2021

Keywords

Comments

The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 3..15 of this table.

Examples

			Triangle begins:
  1;
  1, 1,  1;
  1, 2,  5,   2,    1;
  1, 3, 17,  31,   22,    6,    2;
  1, 4, 42, 157,  318,  265,  123,   26,   6;
  1, 6, 87, 576, 2128, 4009, 4055, 2332, 804, 147, 17;
  ...
		

Crossrefs

Row sums are A342058.
Cf. A006406 (by edges), A239893 (3-connected), A342060.

Formula

T(n,2) = 1.
T(n,3) = A253186(n-2).

A309936 Irregular triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs with n edges covering k vertices, n >= 1, 1 <= k <= 2*n.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 3, 7, 6, 4, 1, 1, 0, 1, 4, 13, 17, 17, 8, 4, 1, 1, 0, 1, 6, 25, 44, 56, 41, 24, 9, 4, 1, 1, 0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1, 0, 1, 9, 65, 216, 450, 562, 503, 315, 162, 64, 27, 9, 4, 1, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 23 2019

Keywords

Comments

Covering k vertices means there are no vertices of degree zero.

Examples

			Triangle begins:
  0, 1;
  0, 1, 1,  1;
  0, 1, 2,  3,   1,   1;
  0, 1, 3,  7,   6,   4,   1,   1;
  0, 1, 4, 13,  17,  17,   8,   4,  1,  1;
  0, 1, 6, 25,  44,  56,  41,  24,  9,  4, 1, 1;
  0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1;
  ...
		

Crossrefs

Row sums are A050535.
Columns k=3..4 are A253186, A328652.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    C(n,m)={my(s=O(x*x^m)); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i+O(x*x^m))); Col(s/n!)}
    T(m) = {my(n=2*m, A=Mat(vector(n+1, n, C(n-1,m)))); A[2..m+1, 2..n+1]-A[2..m+1, 1..n]}
    { my(A=T(8)); for(n=1, matsize(A)[1], print(A[n, 1..2*n])) }

Formula

T(n,k) = A192517(k,n) - A192517(k-1,n) for k > 1.

A343870 Triangle read by rows: T(n,k) is the number of unlabeled nonseparable (or 2-connected) planar graphs with n edges and k nodes (n >= 1, 2 <= k <= n + 1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 3, 3, 1, 0, 0, 0, 0, 2, 9, 4, 1, 0, 0, 0, 0, 1, 13, 20, 6, 1, 0, 0, 0, 0, 0, 11, 49, 40, 7, 1, 0, 0, 0, 0, 0, 5, 77, 158, 70, 9, 1, 0, 0, 0, 0, 0, 2, 75, 406, 426, 121, 11, 1, 0, 0, 0, 0, 0, 0, 47, 662, 1645, 1018, 189, 13, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, May 04 2021

Keywords

Examples

			Triangle T(n,k) begins (n edges >= 1, k vertices >= 2):
  1;
  0, 0;
  0, 1, 0;
  0, 0, 1, 0;
  0, 0, 1, 1,  0;
  0, 0, 1, 2,  1,  0;
  0, 0, 0, 3,  3,  1,   0;
  0, 0, 0, 2,  9,  4,   1,   0;
  0, 0, 0, 1, 13, 20,   6,   1,   0;
  0, 0, 0, 0, 11, 49,  40,   7,   1,  0;
  0, 0, 0, 0,  5, 77, 158,  70,   9,  1, 0;
  0, 0, 0, 0,  2, 75, 406, 426, 121, 11, 1, 0;
  ...
		

Crossrefs

Row sums are A343869.
Column sums are A021103.
Cf. A049334, A049336 (transpose), A049337, A253186, A339070.

Programs

  • nauty
    geng -C $k $n:$n | planarg -q | countg -q # Georg Grasegger, Jun 05 2023

Formula

T(n, n) = 1 for n >= 3.
T(n, n-1) = A253186(n-3) for n >= 3.

A160138 a(n) = number of solutions to the system: x + y + z + w = n, -2x - y + z + 2w = 5 with nonnegative x, y, z, w.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 32, 36, 39, 43, 47, 51, 55, 60, 64, 69, 74, 79, 84, 90, 95, 101, 107, 113, 119, 126, 132, 139, 146, 153, 160, 168, 175, 183, 191, 199, 207, 216, 224, 233, 242, 251, 260, 270, 279, 289, 299, 309, 319, 330, 340
Offset: 1

Views

Author

Krishnan Sundararaman (krishnan.sundararaman(AT)enmu.edu), May 02 2009

Keywords

Comments

Number of ways in which playing n one-card-poker games results in a payoff of $5.
x = # of games where player loses $2,
y = # of games where player loses $1,
z = # of games where player wins $1,
w = # of games where player wins $2.
The events i.e. winning $1, losing $2 etc. are mutually exclusive.
Hence in n games
x+y+z+w = n
-2x-y+z+2w = $5

Examples

			For n = 3, a(3) = 1, since the four-tuple <x=0, y=0, z=1, w=2> allows you to win $5 in 3 games. x + y + z + w = 1 + 2 =3, -2x - y + z + 2w = 1 + 2*2 = 5, as desired.
		

Crossrefs

Cf. A008806 is the number of ways in which playing n one-card-poker games results in a payoff of $0, i.e., the n-th term is the number of solutions to the system: x + y + z + w = n, -2x - y + z + 2w = 0, with nonnegative x, y, z, w.
Except for offset, same as A253186.

Programs

  • Maple
    > fourples2 := proc (n) local i, c1, c2, c3, c4, c3positive, mylist, cash, k, howmanyways; cash := 2*n; for k from -cash to cash do i := 0; unassign(mylist); for c1 from 0 to n do c3positive := true; for c2 from 0 to n-c1 while c3positive do c3 := 2*n-4*c1-3*c2-k; if 0 <= c3 then c4 := n-c1-c2-c3; if 0 <= c4 then i := i+1; mylist[i] := [c1, c2, c3, c4] end if else c3positive := false end if end do end do; howmanyways[k] := [i, [seq(mylist[j], j = 1 .. i)]] end do; return howmanyways end proc; N := 20; for n to N do a := fourples2(n); points[n] := [n, a[5][1]] end do; seq(points[n], n = 1 .. N);
  • Mathematica
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 1, 2, 3, 4}, 100] (* Jean-François Alcover, Apr 11 2020 *)
  • PARI
    concat([0, 0], Vec((1 + x - x^3)/((1 - x)^3*(1 + x)*(1 + x + x^2)) + O(x^60))) \\ Andrew Howroyd, Jan 12 2020

Formula

From Andrew Howroyd, Jan 12 2020: (Start)
a(n) = A253186(n-1).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n > 6.
G.f.: x^3*(1 + x - x^3)/((1 - x)^3*(1 + x)*(1 + x + x^2)).
(End)

Extensions

Terms a(13) and beyond from Andrew Howroyd, Jan 12 2020
Previous Showing 11-17 of 17 results.