A253561
Square array read by antidiagonals: A(row,col) = A122111(A246278(row,col)).
Original entry on oeis.org
2, 3, 4, 6, 9, 8, 5, 18, 27, 16, 12, 25, 54, 81, 32, 10, 36, 125, 162, 243, 64, 24, 50, 108, 625, 486, 729, 128, 7, 72, 250, 324, 3125, 1458, 2187, 256, 15, 49, 216, 1250, 972, 15625, 4374, 6561, 512, 20, 75, 343, 648, 6250, 2916, 78125, 13122, 19683, 1024, 48, 100, 375, 2401, 1944, 31250, 8748, 390625, 39366, 59049, 2048, 14, 144, 500, 1875, 16807, 5832, 156250, 26244, 1953125, 118098, 177147, 4096
Offset: 2
The top left corner of the array:
2, 3, 6, 5, 12, 10, 24, 7, 15, 20, 48, 14, 96, 40,
4, 9, 18, 25, 36, 50, 72, 49, 75, 100, 144, 98, 288, 200,
8, 27, 54, 125, 108, 250, 216, 343, 375, 500, 432, 686, 864, 1000,
16, 81, 162, 625, 324, 1250, 648, 2401, 1875, 2500,1296, 4802,2592, 5000,
32,243, 486,3125, 972, 6250, 1944,16807, 9375,12500,3888,33614,7776,25000,
...
A253564
Permutation of natural numbers: a(n) = A156552(A122111(n)).
Original entry on oeis.org
0, 1, 3, 2, 7, 5, 15, 4, 6, 11, 31, 9, 63, 23, 13, 8, 127, 10, 255, 19, 27, 47, 511, 17, 14, 95, 12, 39, 1023, 21, 2047, 16, 55, 191, 29, 18, 4095, 383, 111, 35, 8191, 43, 16383, 79, 25, 767, 32767, 33, 30, 22, 223, 159, 65535, 20, 59, 71, 447
Offset: 1
-
a:= proc(n) local i, l, r; r, l:= 0, [0, sort(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2]))[]];
for i to nops(l)-1 do
r:= 2*((x-> 2*x+1)@@(l[i+1]-l[i]))(r)
od; r/2
end:
seq(a(n), n=1..120); # Alois P. Heinz, Jul 21 2017
-
Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[ 2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &[If[n == 1, 1, Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@ n]]], {n, 57}] (* Michael De Vlieger, Sep 08 2016, after JungHwan Min at A122111 *)
-
(define (A253564 n) (A156552 (A122111 n)))
Original entry on oeis.org
1, 2, 3, 4, 7, 5, 19, 6, 9, 11, 53, 10, 131, 23, 13, 8, 311, 15, 719, 22, 29, 59, 1619, 14, 49, 137, 21, 46, 3671, 17, 8161, 12, 61, 313, 37, 25, 17863, 727, 139, 26, 38873, 31, 84017, 118, 39, 1621, 180503, 20, 361, 77, 317, 274, 386093, 33, 71, 58, 733, 3673, 821641, 34, 1742537, 8167, 87, 18, 151, 67, 3681131, 626, 1627, 41, 7754077, 35, 16290047
Offset: 1
From _Peter Munn_, Jan 04 2021: (Start)
In this set of examples we consider [a(n)] as a function a(.) with an inverse, a^-1(.).
First, a table showing mapping of the powers of 2:
n a^-1(2^n) = 2^n = a(2^n) =
A001146(n-1) A000079(n) A057335(n)
0 (1) 1 1
1 2 2 2
2 4 4 4
3 16 8 6
4 256 16 8
5 65536 32 12
6 4294967296 64 18
...
Next, a table showing mapping of the squarefree numbers, as listed in A019565 (a lexicographic ordering by prime factors):
n a^-1(A019565(n)) A019565(n) a(A019565(n)) a^2(A019565(n))
Cf. {A337533} Cf. {A005117} = prime(n) = A033844(n-1)
0 1 1 (1) (1)
1 2 2 2 2
2 3 3 3 3
3 8 6 5 7
4 6 5 7 19
5 12 10 11 53
6 18 15 13 131
7 128 30 17 311
8 5 7 19 719
9 24 14 23 1619
...
As sets, the above columns are A337533, A005117, A008578, {1} U A033844.
Similarly, we get bijections between sets A000290\{0} -> {1} U A070003; and {1} U A335740 -> A005408 -> A066207.
(End)
Lists of sets (S_1, S_2, ... S_j) related by the bijection defined by the sequence: (
A000290\{0}, {1} U
A070003), ({1} U
A001146,
A000079,
A055932), ({1} U
A335740,
A005408,
A066207), (
A337533,
A005117,
A008578, {1} U
A033844).
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 5, 16, 9, 12, 10, 32, 15, 24, 18, 256, 30, 64, 7, 48, 27, 20, 14, 512, 36, 40, 81, 96, 21, 128, 42, 65536, 54, 60, 72, 1024, 35, 120, 45, 768, 70, 192, 105, 80, 162, 28, 210, 131072, 25, 144, 90, 160, 11, 4096, 108, 1536, 135, 56, 22, 2048, 33, 84, 243, 4294967296, 216, 384, 66, 240, 270, 288, 55, 262144, 110, 168, 324, 480, 50
Offset: 1
Sorted odd bisection (excluding 1):
A335740.
Sequences of sequences (S_1, S_2, ... S_j) with the property a(S_i) = S_{i+1}, or essentially so: (
A033844,
A000040,
A019565), (
A057335,
A000079,
A001146), (
A000244,
A011764), (
A001248,
A334110), (
A253563,
A334866).
The inverse permutation,
A336321, lists sequences where the property is weaker (between the sets of terms).
A253552
Permutation of natural numbers: a(n) = A252752(A005940(n+1)) - 1.
Original entry on oeis.org
1, 3, 2, 6, 4, 5, 7, 10, 11, 8, 16, 9, 37, 12, 29, 15, 22, 17, 46, 13, 106, 23, 67, 14, 301, 47, 154, 18, 352, 38, 121, 21, 56, 30, 92, 24, 211, 57, 191, 19, 596, 122, 436, 31, 991, 80, 277, 20, 1177, 327, 1226, 58, 2776, 173, 631, 25, 7751, 380, 1432, 48, 3241, 138, 497, 28, 79, 68, 232, 39, 529, 107, 379, 32, 1486, 233, 862, 69, 1954, 212, 781, 26
Offset: 1
Differs from
A249725 for the first time at n=13, where a(13) = 37, while
A249725(13) = 22.
Comments