cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A299034 a(n) = n! * [x^n] Product_{k>=1} 1/(1 - x^k)^(n/k).

Original entry on oeis.org

1, 1, 8, 93, 1544, 32615, 843264, 25739539, 906373376, 36163950849, 1612483625600, 79458277381901, 4288069172500992, 251520785449249927, 15932801526165085184, 1084003570689331039875, 78835487923639854792704, 6103175938145968656408641, 501114006272655771562911744
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(n/k) begins:
n = 0: (1), 0,   0,    0,     0,      0,       0,  ...
n = 1:  1, (1),  3,   11,    59,    339,    2629,  ...
n = 2:  1,  2,  (8),  40,   260,   1928,   17056,  ...
n = 3:  1,  3,  15,  (93),  711,   6237,   62901,  ...
n = 4:  1,  4,  24,  176, (1544), 15456,  174784,  ...
n = 5:  1,  5,  35,  295,  2915, (32615), 407725,  ...
n = 6:  1,  6,  48,  456,  5004,  61704, (843264), ...
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Product[1/(1 - x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 18}]

Formula

a(n) = n! * [x^n] exp(n*Sum_{k>=1} d(k)*x^k/k), where d(k) is the number of divisors of k (A000005).
a(n) ~ c * d^n * n^n, where d = 1.7257974131308983723949107467... and c = 0.693704376971941705824592525... - Vaclav Kotesovec, Sep 08 2018

A386720 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^3) is the g.f. of A023872.

Original entry on oeis.org

1, 1, 19, 163, 1571, 15276, 152029, 1525420, 15460771, 157716235, 1617959044, 16672687769, 172459185341, 1789587777849, 18621317408384, 194222638392213, 2029985619026851, 21256104343844595, 222937740908641405, 2341629730618924374, 24627719497316157396, 259326672761381979574
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 31 2025

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    G(x) := series(exp(add(sigma[4](k)*x^k/k, k = 1..25)), x, 26):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..25);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(n*k^3), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[4, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} sigma_4(k)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 10.783710654896500462544161711323081108292517438268962307143535279238... and c = 0.2464683956609371456774144752559018514863700235623819263696832303304...

A300457 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n^k).

Original entry on oeis.org

1, -1, -3, -1, 25, 624, 9871, 170470, 3027249, 55077245, 979330606, 15079702923, 94670678245, -7958168036625, -626145997536240, -34564907982551791, -1733699815491494303, -84294315853736719077, -4067859614343931897505, -196552300464314521511610, -9519733465269825759734169
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} (1 - x^k)^(n^k) begins:
n = 0: (1),  0,    0,    0,   0,     0,  ...
n = 1:  1, (-1),  -1,    0,   0,     1,  ...
n = 2:  1,  -2,  (-3),   0,   2,    12,  ...
n = 3:  1,  -3,   -6,  (-1),  9,    63,  ...
n = 4:  1,  -4,  -10,   -4, (25),  224,  ...
n = 5:  1,  -5,  -15,  -10,  55,  (624), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

A300458 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n^k).

Original entry on oeis.org

1, -1, -1, -10, 11, 374, 9792, 183847, 3469427, 65038049, 1195396233, 19667738452, 189089161562, -6219720781782, -606316892131934, -35104997710496175, -1795953382595105853, -88223902016631657740, -4283800987347611165184, -207864171877269042498096, -10102590396625592962089500
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} 1/(1 + x^k)^(n^k) begins:
n = 0: (1),  0,    0,    0,   0,     0,  ...
n = 1:  1, (-1),   0,   -1,   1,    -1,  ...
n = 2:  1,  -2,  (-1),  -4,   3,    -2,  ...
n = 3:  1,  -3,   -3, (-10),  6,    15,  ...
n = 4:  1,  -4,   -6,  -20, (11),  104,  ...
n = 5:  1,  -5,  -10,  -35,  20,  (374), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Previous Showing 11-14 of 14 results.