cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A256615 Decimal expansion of log(Gamma(1/24)).

Original entry on oeis.org

3, 1, 5, 5, 4, 0, 2, 8, 7, 7, 3, 8, 1, 1, 4, 4, 7, 2, 2, 7, 7, 4, 6, 6, 4, 4, 5, 5, 7, 3, 9, 8, 0, 5, 6, 9, 0, 4, 5, 8, 3, 5, 1, 5, 8, 8, 8, 4, 4, 0, 2, 4, 8, 1, 9, 5, 7, 7, 7, 7, 1, 4, 5, 4, 3, 5, 3, 2, 0, 3, 7, 0, 6, 5, 2, 8, 9, 7, 5, 4, 9, 2, 4, 4, 8, 2, 5, 4, 9, 2, 4, 1, 1, 3, 8, 1, 7, 2, 7, 1, 7, 5, 0, 1
Offset: 1

Views

Author

Keywords

Examples

			3.155402877381144722774664455739805690458351588844024...
		

Crossrefs

Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256616 (k=48).

Programs

  • Maple
    evalf(log(GAMMA(1/24)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/24]],10,100][[1]]
  • PARI
    log(gamma(1/24))

A256616 Decimal expansion of log(Gamma(1/48)).

Original entry on oeis.org

3, 8, 5, 9, 5, 2, 9, 0, 8, 5, 1, 6, 8, 5, 2, 8, 6, 7, 8, 7, 7, 2, 6, 6, 9, 4, 9, 3, 1, 7, 3, 1, 2, 5, 0, 3, 8, 0, 5, 8, 7, 0, 1, 5, 2, 7, 3, 1, 6, 4, 9, 9, 4, 3, 8, 9, 1, 6, 3, 4, 3, 8, 3, 2, 4, 5, 8, 3, 9, 5, 9, 1, 9, 2, 5, 4, 4, 9, 4, 9, 0, 5, 9, 2, 0, 5, 4, 4, 3, 2, 4, 6, 8, 3, 6, 4, 5, 9, 7, 6, 6, 4, 0, 7, 4
Offset: 1

Views

Author

Keywords

Examples

			3.859529085168528678772669493173125038058701527316499...
		

Crossrefs

Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24).

Programs

  • Maple
    evalf(log(GAMMA(1/48)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/48]],10,100][[1]]
  • PARI
    log(gamma(1/48))

A257958 Decimal expansion of the Digamma function at 1/Pi, negated.

Original entry on oeis.org

3, 2, 9, 0, 2, 1, 3, 9, 6, 0, 1, 7, 3, 2, 2, 4, 0, 9, 0, 8, 4, 3, 0, 9, 0, 8, 4, 5, 5, 4, 0, 0, 1, 9, 0, 3, 7, 4, 0, 2, 1, 9, 3, 2, 8, 2, 0, 0, 7, 0, 1, 6, 1, 2, 9, 3, 8, 8, 9, 5, 3, 1, 8, 3, 7, 5, 5, 3, 7, 5, 6, 6, 5, 3, 3, 7, 1, 7, 9, 1, 2, 9, 1, 5, 3, 2, 8, 7, 7, 1, 1, 1, 6, 9, 3, 5, 6, 7, 3, 1, 6, 6, 9
Offset: 1

Views

Author

Keywords

Comments

The reference gives an interesting series representation with rational coefficients for Psi(1/Pi) = -log(Pi) - Pi/2 - 1/2 - 1/8 - 1/72 + 1/64 +7/400 + 7/576 + 643/94080 + 103/30720 + ...

Examples

			-3.2902139601732240908430908455400190374021932820070161...
		

Crossrefs

Programs

  • Maple
    evalf(Psi(1/Pi), 120);
  • Mathematica
    RealDigits[PolyGamma[1/Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(1/Pi)

Formula

Int_0^infinity x*dx/[(x^2+1)(exp(2x)-1)] = -Pi/2-Psi(1/Pi) = -1.5707...+ 3.2902.. = 1.71941... - R. J. Mathar, Aug 14 2023

A257959 Decimal expansion of the Digamma function at 1/2 + 1/Pi, negated.

Original entry on oeis.org

9, 2, 3, 6, 3, 2, 6, 7, 5, 9, 6, 1, 3, 3, 7, 7, 3, 4, 6, 0, 0, 0, 2, 6, 3, 3, 4, 7, 4, 8, 6, 7, 4, 7, 1, 3, 9, 8, 9, 4, 8, 9, 3, 2, 1, 5, 2, 6, 1, 0, 2, 7, 5, 3, 8, 5, 3, 5, 3, 9, 9, 3, 1, 5, 7, 2, 2, 0, 1, 3, 8, 9, 5, 4, 1, 0, 3, 9, 8, 8, 6, 7, 3, 3, 8, 7, 7, 1, 3, 7, 8, 2, 8, 0, 9, 1, 7, 3, 1, 0, 8, 9, 4
Offset: 0

Views

Author

Keywords

Comments

The reference gives an interesting series representation with rational coefficients for Psi(1/2 + 1/Pi) = -log(Pi) + 1/4 + 1/16 - 5/576 - 13/512 - 569/25600 -539/36864 - 98671/12042240 - 16231/3932160 - ...

Examples

			-0.9236326759613377346000263347486747139894893215261027...
		

Crossrefs

Programs

  • Maple
    evalf(Psi(1/2+1/Pi), 120);
  • Mathematica
    RealDigits[PolyGamma[1/2+1/Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(1/2+1/Pi)

A257957 Decimal expansion of log(Gamma(1/Pi)).

Original entry on oeis.org

1, 0, 3, 3, 6, 4, 6, 1, 2, 5, 7, 6, 5, 5, 8, 2, 7, 0, 6, 4, 8, 5, 5, 3, 7, 4, 5, 5, 3, 3, 1, 6, 1, 7, 8, 6, 6, 7, 1, 0, 0, 3, 0, 8, 7, 0, 1, 5, 9, 5, 9, 8, 8, 6, 0, 4, 4, 8, 2, 1, 8, 5, 7, 5, 2, 9, 5, 1, 1, 3, 1, 2, 7, 1, 4, 7, 9, 4, 5, 4, 4, 8, 1, 4, 7, 9, 6, 9, 8, 4, 1, 8, 5, 8, 0, 5, 3, 8, 5, 5, 1, 6, 8
Offset: 1

Views

Author

Keywords

Comments

The reference gives an interesting series representation with rational coefficients for log(Gamma(1/Pi)) = (1-1/Pi)*log(Pi) - 1/Pi + log(2)/2 + (1 + 1/4 + 1/12 + 1/32 + 1/75 + 1/144 + 13/2880 + 157/46080 + ...)/(2*Pi).
The value log(Gamma(1/Pi)) is also intimately related to integral_{x=0..1} arctan(arctanh(x))/x (A257963).

Examples

			1.0336461257655827064855374553316178667100308701595988...
		

Crossrefs

Programs

  • Maple
    evalf(log(GAMMA(1/Pi)), 120);
  • Mathematica
    RealDigits[Log[Gamma[1/Pi]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); log(gamma(1/Pi))

A115252 Decimal expansion of -(Pi*log((sqrt(2*Pi)*Gamma(3/4))/Gamma(1/4)))/2.

Original entry on oeis.org

2, 6, 0, 4, 4, 2, 8, 0, 6, 3, 0, 0, 9, 8, 8, 4, 4, 5, 5, 4, 0, 0, 9, 3, 8, 6, 8, 7, 8, 9, 7, 2, 7, 2, 1, 9, 5, 3, 1, 8, 1, 9, 1, 7, 7, 7, 2, 3, 1, 4, 2, 6, 7, 4, 9, 8, 7, 6, 8, 7, 7, 9, 2, 1, 0, 5, 7, 7, 1, 6, 0, 3, 8, 1, 4, 7, 3, 1, 7, 3, 9, 2, 6, 9, 8, 9, 3, 3, 2, 0, 8, 0, 4, 0, 0, 9, 1, 4, 9, 8, 1, 1, 7, 1, 3
Offset: 0

Views

Author

Eric W. Weisstein, Jan 17 2006

Keywords

Comments

This sequence (its negated version) is also the decimal expansion of the first Malmsten integral int_{x=1..infinity} log(log(x))/(1 + x^2) dx = int_{x=0..1} log(log(1/x))/(1 + x^2) dx = int_{x=0..infinity} 0.5*log(x)/cosh(x) dx = int_{x=Pi/4..Pi/2} log(log(tan(x))) dx = (1/2)*Pi*log(2) + (3/4)*Pi*log(Pi) - Pi*log(Gamma(1/4)). - Iaroslav V. Blagouchine, Mar 29 2015

Examples

			0.26044280630098844554009386878972721953181917772314...
		

Crossrefs

Cf. A256127 (second Malmsten integral), A256128 (third Malmsten integral), A256129 (fourth Malmsten integral), A068466 (Gamma(1/4)), A256166 (log(Gamma(1/4))), A002162 (log 2), A053510 (log Pi).

Programs

  • Mathematica
    RealDigits[-Pi/2*Log[Sqrt[2 Pi] Gamma[3/4]/Gamma[1/4]], 10, 111][[1]] (* Robert G. Wilson v, Dec 06 2014 *)
  • PARI
    (-Pi*log((sqrt(2*Pi)*gamma(3/4))/gamma(1/4)))/2 \\ Michel Marcus, Dec 06 2014

Formula

Equals integral_[0..1] log(1/log(1/x))/(1+x^2) dx. - Jean-François Alcover, Jan 28 2015
Previous Showing 11-16 of 16 results.