cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A284633 Numbers n with digits 3 and 6 only.

Original entry on oeis.org

3, 6, 33, 36, 63, 66, 333, 336, 363, 366, 633, 636, 663, 666, 3333, 3336, 3363, 3366, 3633, 3636, 3663, 3666, 6333, 6336, 6363, 6366, 6633, 6636, 6663, 6666, 33333, 33336, 33363, 33366, 33633, 33636, 33663, 33666, 36333, 36336, 36363, 36366, 36633, 36636
Offset: 1

Views

Author

Jaroslav Krizek, Mar 30 2017

Keywords

Comments

All terms after 3 are composite.

Crossrefs

Cf. A007931.
Numbers n with digits 6 and k only for k = 0..5 and 7..9: A204093 (k = 0), A284293 (k = 1), A284632 (k = 2), this sequence (k = 3), A284634 (k = 4), A256291 (k = 5), A256292 (k = 7), A284635 (k = 8), A284636 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 6}]
  • Mathematica
    Table[Map[FromDigits, Tuples[{3, 6}, {k}]], {k, 5}] // Flatten (* Michael De Vlieger, Mar 30 2017 *)

Formula

a(n) = 3*A007931(n). - Michel Marcus, Mar 30 2017

A284636 Numbers with digits 6 and 9 only.

Original entry on oeis.org

6, 9, 66, 69, 96, 99, 666, 669, 696, 699, 966, 969, 996, 999, 6666, 6669, 6696, 6699, 6966, 6969, 6996, 6999, 9666, 9669, 9696, 9699, 9966, 9969, 9996, 9999, 66666, 66669, 66696, 66699, 66966, 66969, 66996, 66999, 69666, 69669, 69696, 69699, 69966, 69969
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2017

Keywords

Comments

All terms are composite.
All terms are divisible by 3. - Michael S. Branicky, Jun 09 2021

Crossrefs

Cf. A032810.
Numbers n with digits 6 and k only for k = 0 - 5 and 7 - 9: A204093 (k = 0), A284293 (k = 1), A284632 (k = 2), A284633 (k = 3), A284634 (k = 4), A256291 (k = 5), A256292 (k = 7), A284635 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {6, 9}]
    
  • Mathematica
    Table[FromDigits /@ Tuples[{6, 9}, n], {n, 5}] // Flatten (* or *)
    Select[Range@ 70000, Total@ Pick[DigitCount@ #, {0, 0, 0, 0, 0, 1, 0, 0, 1, 0}, 0] == 0 &] (* Michael De Vlieger, Apr 02 2017 *)
  • PARI
    a(n) = {
      my(z, e = logint(n+1,2,&z),
         t1 = 9 * subst(Pol(binary(n+1-z),'x), 'x, 10),
         t2 = 6 * subst(Pol(binary(2*z-2-n),'x), 'x, 10));
      t1+t2;
    };
    vector(44, n, a(n)) \\ Gheorghe Coserea, Apr 04 2017
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '6').replace('1', '9'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Jun 09 2021

Formula

a(n) = 3 * A032810(n).

A284635 Numbers with digits 6 and 8 only.

Original entry on oeis.org

6, 8, 66, 68, 86, 88, 666, 668, 686, 688, 866, 868, 886, 888, 6666, 6668, 6686, 6688, 6866, 6868, 6886, 6888, 8666, 8668, 8686, 8688, 8866, 8868, 8886, 8888, 66666, 66668, 66686, 66688, 66866, 66868, 66886, 66888, 68666, 68668, 68686, 68688, 68866, 68868
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2017

Keywords

Comments

All terms are even.

Crossrefs

Cf. A032834.
Numbers n with digits 6 and k only for k = 0 - 5 and 7 - 9: A204093 (k = 0), A284293 (k = 1), A284632 (k = 2), A284633 (k = 3), A284634 (k = 4), A256291 (k = 5), A256292 (k = 7), this sequence (k = 8), A284636 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {6, 8}]
    
  • Mathematica
    Table[FromDigits /@ Tuples[{6, 8}, n], {n, 5}] // Flatten (* or *)
    Select[Range@ 70000, Total@ Pick[DigitCount@ #, {0, 0, 0, 0, 0, 1, 0, 1, 0, 0}, 0] == 0 &] (* Michael De Vlieger, Apr 02 2017 *)
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '6').replace('1', '8'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Jun 08 2021

Formula

a(n) = 2 * A032834(n).

A285011 Numbers with digits 7 and 9 only.

Original entry on oeis.org

7, 9, 77, 79, 97, 99, 777, 779, 797, 799, 977, 979, 997, 999, 7777, 7779, 7797, 7799, 7977, 7979, 7997, 7999, 9777, 9779, 9797, 9799, 9977, 9979, 9997, 9999, 77777, 77779, 77797, 77799, 77977, 77979, 77997, 77999, 79777, 79779, 79797, 79799, 79977, 79979
Offset: 1

Views

Author

Jaroslav Krizek, Apr 08 2017

Keywords

Crossrefs

Prime terms are in A020471.
Numbers with digits 7 and k only for k = 0 - 6 and 8 - 9: A204094 (k = 0), A276039 (k = 1), A284921 (k = 2), A143967 (k = 3), A284971 (k = 4), A284380 (k = 5), A256292 (k = 6), A256340 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {7, 9}];
    
  • Mathematica
    Flatten@ Table[FromDigits /@ Tuples[{7, 9}, n], {n, 5}] (* Giovanni Resta, Apr 10 2017 *)
  • PARI
    a(n,{p=[7,9]})={my(v=binary(n+1));fromdigits(vector(#v-1,i,p[2]*v[i+1]+p[1]*!v[i+1]))} \\ R. J. Cano, Apr 09 2017
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '7').replace('1', '9'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Jul 09 2021
Previous Showing 11-14 of 14 results.