A257607
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 5.
Original entry on oeis.org
1, 5, 5, 25, 60, 25, 125, 535, 535, 125, 625, 4210, 7490, 4210, 625, 3125, 30885, 86110, 86110, 30885, 3125, 15625, 216560, 880735, 1377760, 880735, 216560, 15625, 78125, 1471235, 8330745, 18948695, 18948695, 8330745, 1471235, 78125, 390625, 9764910, 74498800, 234897010, 341076510, 234897010, 74498800, 9764910, 390625
Offset: 0
Triangle begins as:
1;
5, 5;
25, 60, 25;
125, 535, 535, 125;
625, 4210, 7490, 4210, 625;
3125, 30885, 86110, 86110, 30885, 3125;
15625, 216560, 880735, 1377760, 880735, 216560, 15625;
78125, 1471235, 8330745, 18948695, 18948695, 8330745, 1471235, 78125;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,1,5], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
-
def T(n,k,a,b): # A257607
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,1,5) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
A257626
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 6.
Original entry on oeis.org
1, 6, 6, 36, 108, 36, 216, 1404, 1404, 216, 1296, 15876, 33696, 15876, 1296, 7776, 166212, 642492, 642492, 166212, 7776, 46656, 1659204, 10701720, 19274760, 10701720, 1659204, 46656, 279936, 16052580, 163263924, 481752360, 481752360, 163263924, 16052580, 279936
Offset: 0
Triangle begins as:
1;
6, 6;
36, 108, 36;
216, 1404, 1404, 216;
1296, 15876, 33696, 15876, 1296;
7776, 166212, 642492, 642492, 166212, 7776;
46656, 1659204, 10701720, 19274760, 10701720, 1659204, 46656;
279936, 16052580, 163263924, 481752360, 481752360, 163263924, 16052580, 279936;
See similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,3,6], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
def T(n,k,a,b): # A257626
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,3,6) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A154694
Triangle read by rows: T(n,k) = ((3/2)^k*2^n + (2/3)^k*3^n)*A008292(n+1,k+1).
Original entry on oeis.org
2, 5, 5, 13, 48, 13, 35, 330, 330, 35, 97, 2028, 4752, 2028, 97, 275, 11970, 54360, 54360, 11970, 275, 793, 69840, 557388, 1043712, 557388, 69840, 793, 2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550, 2315, 6817, 2388516, 51011136, 247761072, 404844480, 247761072, 51011136, 2388516, 6817
Offset: 0
Triangle begins as:
2;
5, 5;
13, 48, 13;
35, 330, 330, 35;
97, 2028, 4752, 2028, 97;
275, 11970, 54360, 54360, 11970, 275;
793, 69840, 557388, 1043712, 557388, 69840, 793;
2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550, 2315;
-
A154694:= func< n,k | (2^(n-k)*3^k+2^k*3^(n-k))*EulerianNumber(n+1, k) >;
[A154694(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
A154694 := proc(n,m)
(3^m*2^(n-m)+2^m*3^(n-m))*A008292(n+1,m+1) ;
end proc:
seq(seq( A154694(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Mar 11 2024
-
T[n_, k_, p_, q_] := (p^(n - k)*q^k + p^k*q^(n - k))*Eulerian[n+1,k];
Table[T[n,k,2,3], {n,0,12}, {k,0,n}]//Flatten
-
from sage.all import *
from sage.combinat.combinat import eulerian_number
def A154694(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*eulerian_number(n+1,k)
print(flatten([[A154694(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
Definition simplified by the Assoc. Eds. of the OEIS, Jun 07 2010
A257608
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 1.
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 219, 219, 1, 1, 2218, 8322, 2218, 1, 1, 22217, 220222, 220222, 22217, 1, 1, 222216, 5006247, 12332432, 5006247, 222216, 1, 1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1, 1, 22222214, 2123693776, 19700767514, 39259903390, 19700767514, 2123693776, 22222214, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 20, 1;
1, 219, 219, 1;
1, 2218, 8322, 2218, 1;
1, 22217, 220222, 220222, 22217, 1;
1, 222216, 5006247, 12332432, 5006247, 222216, 1;
1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,9,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
def T(n,k,a,b): # A257608
if (k<0 or k>n): return 0
elif (k==0 or k==n): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,9,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022