cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A154693 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*A008292(n+1, k+1).

Original entry on oeis.org

2, 3, 3, 5, 16, 5, 9, 66, 66, 9, 17, 260, 528, 260, 17, 33, 1026, 3624, 3624, 1026, 33, 65, 4080, 23820, 38656, 23820, 4080, 65, 129, 16302, 154548, 374856, 374856, 154548, 16302, 129, 257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 17 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A008292(n+1, k+1). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A008292(n,k).
(p, q) = (2, 2) : 2*A257609(n,k).
(p, q) = (3, 2) : A154694(n,k).
(p, q) = (3, 3) : 2*A257620(n,k). (End)

Examples

			The triangle begins as:
    2;
    3,     3;
    5,    16,      5;
    9,    66,     66,       9;
   17,   260,    528,     260,      17;
   33,  1026,   3624,    3624,    1026,      33;
   65,  4080,  23820,   38656,   23820,    4080,     65;
  129, 16302, 154548,  374856,  374856,  154548,  16302,   129;
  257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260,  257;
		

Crossrefs

Cf. A000629 (row sums), A008292, A154694, A257609, A257620.

Programs

  • Magma
    A154693:= func< n,k | (2^(n-k) + 2^k)*EulerianNumber(n+1, k) >;
    [A154693(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 17 2025
    
  • Mathematica
    p=2; q=1;
    A008292[n_,k_]:= A008292[n,k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
    T[n_, m_]:= (p^(n-m)*q^m + p^m*q^(n-m))*A008292[n+1,m+1];
    Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
  • SageMath
    from sage.combinat.combinat import eulerian_number
    def A154693(n,k): return (2^(n-k) +2^k)*eulerian_number(n+1,k)
    print(flatten([[A154693(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A008292(n+1, k+1)
Sum_{k=0..n} T(n, k) = A000629(n+1).

Extensions

Definition simplified by the Assoc. Eds. of the OEIS - Aug 08 2010.

A257626 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 6.

Original entry on oeis.org

1, 6, 6, 36, 108, 36, 216, 1404, 1404, 216, 1296, 15876, 33696, 15876, 1296, 7776, 166212, 642492, 642492, 166212, 7776, 46656, 1659204, 10701720, 19274760, 10701720, 1659204, 46656, 279936, 16052580, 163263924, 481752360, 481752360, 163263924, 16052580, 279936
Offset: 0

Views

Author

Dale Gerdemann, May 10 2015

Keywords

Examples

			Triangle begins as:
       1;
       6,        6;
      36,      108,        36;
     216,     1404,      1404,       216;
    1296,    15876,     33696,     15876,      1296;
    7776,   166212,    642492,    642492,    166212,      7776;
   46656,  1659204,  10701720,  19274760,  10701720,   1659204,    46656;
  279936, 16052580, 163263924, 481752360, 481752360, 163263924, 16052580, 279936;
		

Crossrefs

See similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,3,6], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
  • Sage
    def T(n,k,a,b): # A257626
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,3,6) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 6.
Sum_{k=0..n} T(n, k) = A051609(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 3, and b = 6. - G. C. Greubel, Mar 20 2022
Previous Showing 11-12 of 12 results.