cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A058305 Numerator of H(n), where H(0)=-1/12, H(n) = number of equivalence classes of positive definite quadratic forms a*x^2+b*x*y+c*y^2 with discriminant b^2-4ac = -n, counting forms equivalent to x^2+y^2 (resp. x^2+x*y+y^2) with multiplicity 1/2 (resp. 1/3).

Original entry on oeis.org

-1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 4, 2, 0, 0, 3, 3, 0, 0, 2, 5, 0, 0, 4, 2, 0, 0, 1, 4, 0, 0, 5, 10, 0, 0, 2, 2, 0, 0, 4, 4, 0, 0, 3, 4, 0, 0, 5, 7, 0, 0, 1, 4, 0, 0, 7, 3, 0, 0, 7, 4, 0, 0, 5, 6, 0, 0, 3, 4, 0, 0, 6, 2, 0, 0, 2, 6, 0, 0, 8, 6, 0, 0, 3
Offset: 0

Views

Author

N. J. A. Sloane, Dec 09 2000

Keywords

Comments

H(n) is usually called the Hurwitz class number.
a(n) = 0 if n = 1 or 2 (mod 4).

Examples

			-1/12, 0, 0, 1/3, 1/2, 0, 0, 1, 1, ...
		

References

  • D. Zagier, The Eichler-Selberg Trace Formula on SL_2(Z), Appendix to S. Lang, Introduction to Modular Forms, Springer, 1976.

Crossrefs

Programs

  • Mathematica
    terms = 100; gf[m_] := With[{r = Range[-m, m]}, -2 Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, r}]/EllipticTheta[3, 0, x] - 2 Sum[(-1)^k*x^(k^2 + 2 k)/(1 + x^(2k))^2, {k, r}]/EllipticTheta[3, 0, -x]]; CoefficientList[ gf[terms // Sqrt // Ceiling] + O[x]^terms, x]/12 // Numerator (* Jean-François Alcover, Apr 02 2017, after Michael Somos *)
  • PARI
    H(n)=sumdiv(core(n,1)[2],d,my(D=-n/d^2);if(D%4<2,qfbclassno(D)/max(1,D+6)))
    a(n)=if(n,numerator(H(n)),-1) \\ Charles R Greathouse IV, Apr 25 2013
    
  • PARI
    {a(n) = numerator( qfbhclassno( n))}; /* Michael Somos, Jul 06 2015 */

Formula

H(n) = A259825(n) / 12. - Michael Somos, Jul 05 2015

A058306 Denominator of H(n), where H(0)=-1/12, H(n) = number of equivalence classes of positive definite quadratic forms a*x^2+b*x*y+c*y^2 with discriminant b^2-4ac = -n, counting forms equivalent to x^2+y^2 (resp. x^2+x*y+y^2) with multiplicity 1/2 (resp. 1/3).

Original entry on oeis.org

12, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 09 2000

Keywords

Comments

H(n) is usually called the Hurwitz class number.
a(n) = 1 unless n is of the form 3k^2 or 4k^2. - Charles R Greathouse IV, Apr 25 2013

Examples

			-1/12, 0, 0, 1/3, 1/2, 0, 0, 1, 1, ...
		

References

  • D. Zagier, The Eichler-Selberg Trace Formula on SL_2(Z), Appendix to S. Lang, Introduction to Modular Forms, Springer, 1976.

Crossrefs

Programs

  • Mathematica
    terms = 100; gf[m_] := With[{r = Range[-m, m]}, -2 Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, r}]/EllipticTheta[3, 0, x] - 2 Sum[(-1)^k*x^(k^2 + 2 k)/(1 + x^(2k))^2, {k, r}]/EllipticTheta[3, 0, -x]]; CoefficientList[ gf[terms // Sqrt // Ceiling] + O[x]^terms, x]/12 // Denominator (* Jean-François Alcover, Apr 02 2017, after Michael Somos *)
  • PARI
    H(n)=sumdiv(core(n,1)[2],d,my(D=-n/d^2);if(D%4<2,qfbclassno(D)/max(1,D+6)))
    a(n)=if(n,denominator(H(n)),12) \\ Charles R Greathouse IV, Apr 25 2013
    
  • PARI
    a(n)=if(n,my(D=4-valuation(n,3)%2);denominator(if(issquare(n/D) && n%D==0, qfbclassno(-D)/max(1,6-D))),12) \\ Charles R Greathouse IV, Apr 25 2013
    
  • PARI
    {a(n) = denominator( qfbhclassno( n))}; /* Michael Somos, Jul 06 2015 */

Formula

H(n) = A259825(n) / 12. - Michael Somos, Jul 05 2015

A259827 Expansion of phi(x) * f(-x^12)^3 / f(-x^4) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 3, 2, 0, 0, 4, 6, 0, 0, 4, 2, 0, 0, 4, 8, 0, 0, 7, 2, 0, 0, 8, 10, 0, 0, 4, 4, 0, 0, 5, 10, 0, 0, 8, 4, 0, 0, 12, 10, 0, 0, 8, 6, 0, 0, 4, 14, 0, 0, 12, 2, 0, 0, 8, 14, 0, 0, 8, 4, 0, 0, 9, 18, 0, 0, 12, 6, 0, 0, 16, 14, 0, 0, 4, 4, 0, 0, 12, 12
Offset: 0

Views

Author

Michael Somos, Jul 05 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 2*x + 3*x^4 + 2*x^5 + 4*x^8 + 6*x^9 + 4*x^12 + 2*x^13 + ...
G.f. = q^4 + 2*q^7 + 3*q^16 + 2*q^19 + 4*q^28 + 6*q^31 + 4*q^40 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ x^12]^3 / QPochhammer[ x^4], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^12 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)^3), n))};

Formula

Expansion of phi(x) * c(x^4) / (3 * x^(4/3)) in powers of x where phi() is a Ramanujan theta function and c() is a cubic AGM theta function.
Expansion of q^(-4/3) * eta(q^2)^5 * eta(q^12)^3 / (eta(q)^2 * eta(q^4)^3) in powers of q.
Euler transform of period 12 sequence [ 2, -3, 2, 0, 2, -3, 2, 0, 2, -3, 2, -3, ...].
a(4*n + 2) = a(4*n + 3) = 0. a(4*n + 1) = 2 * A259655(n). 6 * a(n) = A259825(3*n + 4).

A297122 a(n) = n^5*H(n) where H() is the Hurwitz class number.

Original entry on oeis.org

0, 0, 0, 81, 512, 0, 0, 16807, 32768, 0, 0, 161051, 331776, 0, 0, 1518750, 1572864, 0, 0, 2476099, 6400000, 0, 0, 19309029, 15925248, 0, 0, 19131876, 34420736, 0, 0, 85887453, 100663296, 0, 0, 105043750, 151165440, 0, 0, 360896796, 204800000, 0, 0, 147008443
Offset: 0

Views

Author

Seiichi Manyama, Dec 26 2017

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = n^5*qfbhclassno(n)}

Formula

a(n) = n^5*A259825(n)/12.
a(4*n+1) = a(4*n+2) = 0.

A306935 Coefficients of q-expansion of Eisenstein series G_{7/2}(tau) multiplied by -252.

Original entry on oeis.org

1, 0, 0, 56, 128, 0, 0, 576, 756, 0, 0, 1512, 2072, 0, 0, 4032, 4158
Offset: 0

Views

Author

N. J. A. Sloane, Mar 16 2019

Keywords

Crossrefs

A306936 Coefficients of q-expansion of Eisenstein series G_{9/2}(tau) multiplied by 240.

Original entry on oeis.org

1, 2, 0, 0, 242, 480, 0, 0, 2640, 4322, 0, 0, 11040, 13920, 0, 0, 30962, 39360, 0, 0, 65760, 73920, 0, 0, 125280, 156002, 0, 0, 216960, 226080, 0, 0, 340560, 406080, 0, 0, 522962, 541920, 0, 0, 756960, 860160, 0, 0, 1033440, 1063200, 0, 0, 1424160, 1646402, 0, 0, 1907040, 1860000, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Mar 16 2019

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if n==0: return 1
        if (n%4) not in [0, 1]: return 0
        D = Integer(n).squarefree_part()
        f = Integer(sqrt(n/D))
        if (D%4) not in [0, 1]: D, f = 4*D, f//2
        X = kronecker_character(D)
        s = sum([moebius(d)*X(d)*d^3*sigma(f/d, 7) for d in f.divisors()])
        return round((240*X.lfunction(100)(-3)*s).real()) # Robin Visser, Feb 24 2024

Extensions

More terms from Robin Visser, Feb 24 2024

A260195 Number of integer triples [x, y, z] such that 1 <= min(x,z), max(x,z) <= y, y^2 - (x^2 - x + z^2 - z) / 2 = n.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 3, 4, 3, 6, 4, 3, 5, 6, 4, 9, 5, 3, 7, 7, 5, 9, 6, 6, 8, 9, 5, 9, 8, 6, 10, 6, 5, 15, 8, 9, 10, 7, 7, 12, 10, 3, 11, 15, 7, 15, 8, 6, 13, 12, 9, 12, 9, 9, 14, 12, 7, 15, 12, 6, 15, 13, 6, 21, 12, 12, 13, 6, 11, 15, 15, 9, 14, 12, 8, 24, 10, 9
Offset: 0

Views

Author

Michael Somos, Jul 18 2015

Keywords

Comments

Same as A238872 except a(0) = 0.

Examples

			G.f. = x + x^2 + 3*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 3*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ OddQ[n], 1, 1/3] Length @ FindInstance[ {x >= 0, y >= 0, z >= 0, x y + y z + z x + x + y + z + 1 == n}, {x, y, z}, Integers, 10^9];
    a[ n_] := Length @ FindInstance[ {1 <= y <= n, 1 <= x <= y, 1 <= z <= y, y^2 - (x^2 - x + z^2 - z) / 2 == n}, {x, y, z}, Integers, 10^9];
  • PARI
    {a(n) = my(c, t, i); for(k=1 + sqrtint(max(0, n-1)), n, forstep(j=1, min(2*k, sqrtint(t = 8*k^2 - 8*n + 2)), 2, if( issquare( t - j^2, &i) && i<=2*k, c++))); c};

Formula

a(n) = A238872(n) unless n=0. a(2*n) = A130695(2*n) / 3. a(2*n + 1) = A130695(2*n + 1) = A259825(8*n + 3) / 4 = 3 * H(8*n + 3) where H() is the Hurwitz class number.

A369902 Number of isomorphism classes of elliptic curves over the finite field of order prime(n) whose trace of Frobenius is zero.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 4, 6, 6, 6, 2, 8, 4, 10, 6, 12, 6, 4, 14, 4, 10, 12, 12, 4, 14, 10, 12, 6, 8, 10, 20, 8, 12, 14, 14, 6, 4, 22, 14, 20, 10, 26, 4, 10, 18, 12, 14, 20, 10, 12, 30, 12, 28, 16, 26, 22, 22, 6, 20, 12, 18, 12, 38, 8, 10, 12, 8, 20, 14, 16, 38, 18, 10, 12, 34, 22, 6, 20, 16
Offset: 1

Views

Author

Robin Visser, Feb 05 2024

Keywords

Comments

a(n) is the number of isomorphism classes of elliptic curves E over the finite field F_p such that E has exactly p+1 points over F_p.

Examples

			For n = 1, the unique a(1) = 1 elliptic curve over F_2 whose trace of Frobenius is zero is y^2 + y = x^3.
For n = 2, the a(2) = 2 elliptic curves over F_3 whose trace of Frobenius is zero are y^2 = x^3 + x and y^2 = x^3 + 2*x.
For n = 3, the a(3) = 2 elliptic curves over F_5 whose trace of Frobenius is zero are y^2 = x^3 + 1 and y^2 = x^3 + 2.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n<=2, n, qfbhclassno(4*prime(n)));
    
  • Sage
    # A brute force computation of a(n)
    def a(n):
        if n==1: return 1
        p, ECs = Primes()[n-1], []
        for A,B in ((x, y) for x in range(p) for y in range(p)):
            if ((4*A^3 + 27*B^2)%p != 0):
                E = EllipticCurve(GF(p), [A,B])
                if (E.trace_of_frobenius()==0):
                    if not any([E.is_isomorphic(Ei) for Ei in ECs]): ECs.append(E)
        return len(ECs)

Formula

a(n) = A259825(4*prime(n))/12 if n > 2.
Previous Showing 11-18 of 18 results.