cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A320552 Number of partitions of n into parts of exactly ten sorts which are introduced in ascending order such that sorts of adjacent parts are different.

Original entry on oeis.org

1, 46, 1202, 23523, 384227, 5542879, 73055550, 899381476, 10501235760, 117575627562, 1272685923725, 13401470756234, 137945728220808, 1393299928219652, 13851195993229478, 135865787060384468, 1317624915100586227, 12654868264707472392, 120534359759023933905
Offset: 10

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Crossrefs

Column k=10 of A262495.
Cf. A258465.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
    a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(10):
    seq(a(n), n=10..40);

Formula

a(n) ~ 9^(n-1) / (9! * QPochhammer[1/9]). - Vaclav Kotesovec, Oct 25 2018

A262444 Number of 3-colored integer partitions such that no adjacent parts have the same color.

Original entry on oeis.org

1, 3, 9, 21, 51, 111, 249, 525, 1119, 2319, 4809, 9825, 20079, 40671, 82341, 165945, 334191, 671307, 1347861, 2702385, 5416395, 10847787, 21720981, 43474869, 87004875, 174081051, 348279777, 696712749, 1393674603, 2787673767, 5575871457, 11152425093, 22305942039
Offset: 0

Views

Author

Ran Pan, Sep 23 2015

Keywords

Examples

			a(2) = 9 because there are two integer partitions of 2: [2], [1,1] and there are three ways to color [2] and 3 X 2 = 6 ways to color [1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
        end:
    a:= n-> floor(b(n$2)/2*3):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 23 2015
  • Mathematica
    Rest[CoefficientList[Series[3/2 Product[1/(1 - 2 x^k), {k, 1, 35}], {x, 0, 35}], x]] (* Vincenzo Librandi, Sep 23 2015 *)

Formula

G.f.: -1/2 + (3/2)*Product_{k>=1} 1/(1-2*x^k).
a(n) = floor(3/2*A070933(n)).
a(n) = Sum_{k=0..3} 6/k! * A262495(n,3-k). - Alois P. Heinz, Sep 24 2015

A262529 Number of partitions of 2n into parts of exactly n sorts which are introduced in ascending order such that sorts of adjacent parts are different.

Original entry on oeis.org

1, 1, 4, 31, 464, 10423, 307123, 11087757, 471750268, 23064505722, 1272685923725, 78185947269685, 5290601944971906, 390900941750607195, 31309282176759170370, 2701913799542547998709, 249913023732255442857064, 24663493072687443375499678
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2015

Keywords

Examples

			a(2) = 4: 3a1b, 2a2b, 2a1b1a, 1a1b1a1b.
		

Crossrefs

Cf. A262495.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
    a:= n-> add(A(2*n, n-i)*(-1)^i/(i!*(n-i)!), i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n-1), b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]; A[n_, k_] := If[n == 0, 1, If[k<2, k, k*b[n, n, k-1]]]; a[n_] := Sum[A[2*n, n-i]*(-1)^i/(i!*(n-i)!), {i, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)

Formula

a(n) = A262495(2n,n).
a(n) ~ 2^(2*n-2) * (n-1)! / (Pi * sqrt(1-c) * c^(n-1) * (2-c)^n), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599076769581241... - Vaclav Kotesovec, Oct 25 2018
Previous Showing 11-13 of 13 results.