A372174 Number of unlabeled simple graphs covering n vertices with a unique triangle.
0, 0, 0, 1, 1, 5, 16, 79, 424, 3098, 28616
Offset: 0
Links
Crossrefs
Formula
First differences of A372194.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The a(4) = 19 graphs: 12,13,23 12,14,24 13,14,34 23,24,34 12,13,14,23 12,13,14,24 12,13,14,34 12,13,23,24 12,13,23,34 12,13,24,34 12,14,23,24 12,14,23,34 12,14,24,34 12,23,24,34 13,14,23,24 13,14,23,34 13,14,24,34 13,23,24,34 14,23,24,34
cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@y,{k}],And @@ Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&], {k,3,Length[y]}],Min@@#==First[#]&]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[cyc[#]]==2&]],{n,0,5}]
seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ Andrew Howroyd, Jul 31 2024
The a(4) = 15 graphs: 12,13,14,23 12,13,14,24 12,13,14,34 12,13,23,24 12,13,23,34 12,13,24,34 12,14,23,24 12,14,23,34 12,14,24,34 12,23,24,34 13,14,23,24 13,14,23,34 13,14,24,34 13,23,24,34 14,23,24,34
cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}],And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[y]}],Min@@#==First[#]&]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[cyc[#]]==2&]],{n,0,5}]
seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2-x)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ Andrew Howroyd, Jul 31 2024
Triangle begins (zeros shown as dots): 1 . 1 3 1 19 15 . 6 ... 1 155 232 15 190 .. 70 50 .... 30 15 .......... 10 .............. 1 Row n = 4 counts the following graphs: 12,34 12,13,14,23 . 12,13,14,23,24 . . . 12,13,14,23,24,34 13,24 12,13,14,24 12,13,14,23,34 14,23 12,13,14,34 12,13,14,24,34 12,13,14 12,13,23,24 12,13,23,24,34 12,13,24 12,13,23,34 12,14,23,24,34 12,13,34 12,13,24,34 13,14,23,24,34 12,14,23 12,14,23,24 12,14,34 12,14,23,34 12,23,24 12,14,24,34 12,23,34 12,23,24,34 12,24,34 13,14,23,24 13,14,23 13,14,23,34 13,14,24 13,14,24,34 13,23,24 13,23,24,34 13,23,34 14,23,24,34 13,24,34 14,23,24 14,23,34 14,24,34
cycles[g_]:=Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@g,{k}],Min@@#==First[#]&&And@@Table[MemberQ[Sort/@g,Sort[{#[[i]], #[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[g]}]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[cycles[#]]==2k&]], {n,0,5},{k,0,Length[cycles[Subsets[Range[n],{2}]]]/2}]
Representatives of the a(3) = 1 through a(6) = 23 graphs: 12,13,23 12,13,23 12,13,23 12,13,23 14,23,24,34 12,34,35,45 12,34,35,45 14,23,24,34 14,23,24,34 12,25,34,35,45 12,25,34,35,45 14,25,34,35,45 12,36,45,46,56 15,25,34,35,45 13,23,45,46,56 12,14,25,34,35,45 14,25,34,35,45 15,25,34,35,45 12,14,25,34,35,45 12,23,36,45,46,56 13,23,36,45,46,56 13,25,36,45,46,56 13,26,36,45,46,56 14,25,36,45,46,56 15,26,36,45,46,56 16,26,36,45,46,56 12,13,25,36,45,46,56 12,13,26,36,45,46,56 13,23,25,36,45,46,56 14,23,25,36,45,46,56 16,23,25,36,45,46,56 13,14,23,25,36,45,46,56 13,15,23,25,36,45,46,56
geng $n | countg -T1 # Georg Grasegger, Aug 03 2024
Comments