A332404
Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes with irredundance number k.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 5, 1, 1, 11, 16, 5, 1, 1, 34, 94, 21, 5, 1, 1, 156, 710, 150, 21, 5, 1, 1, 1044, 9419, 1691, 164, 21, 5, 1, 1, 12346, 221979, 38207, 1944, 164, 21, 5, 1, 1, 274668, 9907071, 1773452, 47802, 1983, 164, 21, 5, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 5, 1, 1;
11, 16, 5, 1, 1;
34, 94, 21, 5, 1, 1;
156, 710, 150, 21, 5, 1, 1;
1044, 9419, 1691, 164, 21, 5, 1, 1;
12346, 221979, 38207, 1944, 164, 21, 5, 1, 1;
274668, 9907071, 1773452, 47802, 1983, 164, 21, 5, 1, 1;
...
A115196
Triangle read by rows formed from nonzero entries in table of number of graphs on n nodes with clique number k.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 15, 13, 1, 5, 30, 82, 37, 1, 6, 51, 301, 578, 106, 1, 7, 80, 842, 4985, 6021, 409, 1, 8, 117, 1995, 27107, 142276, 101267, 1896, 1, 9, 164, 4210, 112225, 1724440, 7269487, 2882460, 12171
Offset: 2
Table: number of graphs on n nodes with clique number k
n = .1...2...3...4....5....6.....7......8........9.......10.
k ----------------------------------------------------------
2....0...1...2...6...13...37...106....409.....1896....12171 = A052450
3....0...0...1...3...15...82...578...6021...101267..2882460 = A052451
4....0...0...0...1...4....30...301...4985...142276..7269487 = A052452
5....0...0...0...0...1....5.....51....842....27107..1724440 = A077392
6....0...0...0...0...0....1......6.....80.....1995...112225 = A077393
7....0...0...0...0...0....0......1......7......117.....4210 = A077394
8....0...0...0...0...0....0......0......1........8......164 = A205577
9....0...0...0...0...0....0......0......0........1........9 = A205578
10...0...0...0...0...0....0......0......0........0........1.
A332405
Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes with upper irredundance number k.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 13, 15, 4, 1, 1, 36, 83, 30, 5, 1, 1, 101, 582, 302, 51, 6, 1, 1, 364, 6025, 5025, 843, 80, 7, 1, 1, 1511, 99503, 144371, 27160, 1996, 117, 8, 1, 1, 7917, 2706030, 7441332, 1733212, 112291, 4211, 164, 9, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 6, 3, 1;
1, 13, 15, 4, 1;
1, 36, 83, 30, 5, 1;
1, 101, 582, 302, 51, 6, 1;
1, 364, 6025, 5025, 843, 80, 7, 1;
1, 1511, 99503, 144371, 27160, 1996, 117, 8, 1;
1, 7917, 2706030, 7441332, 1733212, 112291, 4211, 164, 9, 1;
...
A287024
Triangle read by rows: T(n,k) is the number of graphs with n vertices with vertex cover number k-1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 15, 13, 1, 1, 5, 30, 82, 37, 1, 1, 6, 51, 301, 578, 106, 1, 1, 7, 80, 842, 4985, 6021, 409, 1, 1, 8, 117, 1995, 27107, 142276, 101267, 1896, 1, 1, 9, 164, 4210, 112225, 1724440, 7269487, 2882460, 12171, 1, 1, 10, 221, 8165, 388547, 13893557, 210799447, 655015612, 138787233, 105070, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 6, 1;
1, 4, 15, 13, 1;
1, 5, 30, 82, 37, 1;
1, 6, 51, 301, 578, 106, 1;
1, 7, 80, 842, 4985, 6021, 409, 1;
1, 8, 117, 1995, 27107, 142276, 101267, 1896, 1;
1, 9, 164, 4210, 112225, 1724440, 7269487, 2882460, 12171, 1;
...
Row 3 is 1, 2, 1 because
\bar K_3 (1 graph) has vertex cover number 0
K_1\cup K_2 and P_3 (2 graphs) have vertex cover number 1
K_3=C_3 (1 graph) has vertex cover number 2
Here, \bar denotes graph complementation and \cup denotes (disjoint) graph union.
A205577
Number of n-node simple graphs having clique number 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 8, 164, 8165, 1184155, 462435257
Offset: 1
A205578
Number of n-node simple graphs having clique number 9.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 221, 14838, 3273685
Offset: 1
A325304
Irregular triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes with matching number k, (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 0, 1, 0, 2, 0, 1, 5, 0, 1, 20, 0, 1, 16, 95, 0, 1, 22, 830, 0, 1, 29, 790, 10297, 0, 1, 37, 1479, 259563, 0, 1, 46, 2625, 166988, 11546911
Offset: 0
Triangle begins:
1;
1;
0, 1;
0, 2;
0, 1, 5;
0, 1, 20;
0, 1, 16, 95;
0, 1, 22, 830;
0, 1, 29, 790, 10297;
0, 1, 37, 1479, 259563;
0, 1, 46, 2625, 166988, 11546911;
...
Cf.
A286951 (not necessarily connected).
Cf.
A218463 (right diagonal, even terms).
A332407
Number of simple graphs on n unlabeled nodes with upper domination number greater than independence number.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 6, 85, 2574, 193486
Offset: 1
The a(6) = 1 graph illustrated below has independence number 2 and upper domination number 3.
*--------o
| \ / |
| *--o |
| / \ |
*--------o
The above graph is the 2 X 3 rook graph, drawn to show all edges.
The three vertices marked with an asterisk are a minimal dominating set.
Comments