cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A283151 Triangle read by rows: Riordan array (1/(1-9x)^(2/3), x/(9x-1)).

Original entry on oeis.org

1, 6, -1, 45, -15, 1, 360, -180, 24, -1, 2970, -1980, 396, -33, 1, 24948, -20790, 5544, -693, 42, -1, 212058, -212058, 70686, -11781, 1071, -51, 1, 1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1, 15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1, 135868590, -203802885
Offset: 0

Views

Author

Tom Richardson, Mar 01 2017

Keywords

Comments

This is an example of a Riordan group involution.
Dual Riordan array of A283150.
With A283150 and A248324, forms doubly infinite Riordan array. For b and c the sequences A283150 and A248324, respectively, and i,j >= 0, the doubly infinite array with d(i,j) = a(i,j), d(-j,-i) = b(i,j), d(i,-j) = c(i,j), and d(-i,j) = 0 (except d(0,0)=1) is a doubly infinite Riordan array.

Examples

			Triangle begins
         1;
         6,        -1;
        45,       -15,       1;
       360,      -180,      24,       -1;
      2970,     -1980,     396,      -33,      1;
     24948,    -20790,    5544,     -693,     42,     -1;
    212058,   -212058,   70686,   -11781,   1071,    -51,    1;
   1817640,  -2120580,  848232,  -176715,  21420,  -1530,   60,  -1;
  15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1;
		

Crossrefs

Formula

a(m,n) = binomial(-n-2/3, m-n)*(-1)^m*9^(m-n).
G.f.: (1-9x)^(1/3)/(xy-9x+1).
Recurrence: a(m,n) = a(m,n-1)*(n-1-m)/(9*n-3) for 0 < n <= m; matrix inverse of a(m,n) is a(m,n). - Werner Schulte, Aug 05 2017
From Peter Bala, Mar 05 2018 (Start):
Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. Then (-1)^n*P(n,x) is the n-th degree Taylor polynomial of (1 - 9*x)^(n-1/3) about 0. For example, for n = 4 we have (1 - 9*x)^(11/3) = 2970*x^4 - 1980*x^3 + 396*x^2 - 33*x + 1 + O(x^5).
Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,9*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(9*x)^k/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(-x) * the e.g.f. for the polynomial R(n,9*x). For example, when n = 3 we have exp(-x)*(360 - 180*(9*x) + 24*(9*x)^2/2! - (9*x)^3/3!) = 360 - 1980*x + 5544*x^2/2! - 11781*x^3/3! + 21420*x^4/4! - ....
Let F(x) = (1 - ( 1 - 9*x)^(1/3))/(3*x). See A025748. The derivatives of F(x) are related to the row polynomials P(n,x) by the identity x^n/n! * (d/dx)^n(F(x)) = 1/(3*x)*( (-1)^n - P(n,x)/(1 - 9*x)^(n-1/3) ), n = 0,1,2,.... Cf. A283151 and A046521. (End)
From Peter Bala, Aug 18 2021: (Start)
T(n,k) = (-1)^k*binomial(n-1/3, n-k)*9^(n-k).
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 9*b, c = -1 and d = 2/3.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = (1/(1 - 9*b*x)^(2/3)) * F(x/(1 - 9*b*x)) iff F(x) = (1/(1 + 9*b*x)^(2/3)) * G(x/(1 + 9*b*x)).
The infinitesimal generator of the unsigned array has the sequence (9*n+6) n>=0 on the main subdiagonal and zeros elsewhere. The m-th power of the unsigned array has entries m^(n-k)*|T(n,k)|. (End)

Extensions

Offset corrected by Werner Schulte, Aug 05 2017

A122897 Riordan array (1/(1-x), c(x)-1) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 19, 7, 1, 1, 64, 67, 34, 9, 1, 1, 196, 232, 144, 53, 11, 1, 1, 625, 804, 573, 261, 76, 13, 1, 1, 2055, 2806, 2211, 1171, 426, 103, 15, 1, 1, 6917, 9878, 8399
Offset: 0

Views

Author

Paul Barry, Sep 18 2006

Keywords

Comments

Product of A007318 and A122896. Inverse of Riordan array ((1+x+x^2)/(1+x)^2,x/(1+x)^2). Row sums are A024718.
The n-th row polynomial (in descending powers of x) equals the n-th Taylor polynomial of the rational function (1 - x^2)/(1 + x + x^2) * (1 + x)^(2*n) about 0. For example, for n = 4 we have (1 - x^2)/( 1 + x + x^2) * (1 + x)^8 = (x^4 + 22*x^3 + 19*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 21 2018

Examples

			Triangle begins
  1,
  1,     1,
  1,     3,     1,
  1,     8,     5,     1,
  1,    22,    19,     7,     1,
  1,    64,    67,    34,     9,    1,
  1,   196,   232,   144,    53,   11,    1,
  1,   625,   804,   573,   261,   76,   13,   1,
  1,  2055,  2806,  2211,  1171,  426,  103,  15,   1,
  1,  6917,  9878,  8399,  4979, 2126,  647, 134,  17,  1,
  1, 23713, 35072, 31655, 20483, 9878, 3554, 932, 169, 19, 1
		

Programs

  • Maple
    A122897 := proc (n, k)
      binomial(2*n, n-k) + 2*add(cos((2/3)*Pi*j)*binomial(2*n, n-k-j), j = 1..n-k)
    end proc:
    for n from 0 to 10 do
    seq(A122897(n, k), k = 0..n)
    end do; # Peter Bala, Feb 21 2018

Formula

T(n,k) = binomial(2*n,n-k) + 2*Sum_{j = 1..n-k} cos((2/3)*Pi*j)* binomial(2*n, n-k-j). - Peter Bala, Feb 21 2018
T(n,k) = k*Sum_{i=0..n-k} C(2*(i+k),i)/(i+k), T(n,0)=1. - Vladimir Kruchinin, Jun 13 2020
Previous Showing 11-12 of 12 results.