A273134 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (x+8*y+8*z+15*w)^2+(6*(x+y+z+w))^2 a square, where x,y,z,w are nonnegative integers with y < z.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 4, 2, 1, 1, 2, 1, 1, 3, 2, 3, 3, 1, 1, 2, 1, 3, 3, 1, 3, 3, 3, 1, 1, 2, 5, 3, 2, 3, 1, 2, 2, 3, 2, 2, 4, 2, 4, 3, 1, 3, 4, 2, 4, 3, 1, 3, 1, 2, 5, 4, 3, 2, 3, 1, 4, 5, 2, 3, 5, 3, 2, 2, 1
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 0^2 + 0^2 + 1^2 + 0^2 with 0 < 1 and (0+8*0+8*1+15*0)^2 + (6*(0+0+1+0))^2 = 10^2. a(2) = 1 since 2 = 1^2 + 0^2 + 1^2 + 0^2 with 0 < 1 and (1+8*0+8*1+15*0)^2 + (6*(1+0+1+0))^2 = 15^2. a(3) = 1 since 3 = 1^2 + 0^2 + 1^2 + 1^2 with 0 < 1 and (1+8*0+8*1+15*1)^2 + (6*(1+0+1+1))^2 = 30^2. a(5) = 1 since 5 = 0^2 + 1^2 + 2^2 + 0^2 with 1 < 2 and (0+8*1+8*2+15*0)^2 + (6*(0+1+2+0))^2 = 30^2. a(6) = 1 since 6 = 1^2 + 0^2 + 2^2 + 1^2 with 0 < 2 and (1+8*0+8*2+15*1)^2 + (6*(1+0+2+1))^2 = 40^2. a(7) = 1 since 7 = 1^2 + 1^2 + 2^2 + 1^2 with 1 < 2 and (1+8*1+8*2+15*1)^2 + (6*(1+1+2+1))^2 = 50^2. a(10) = 1 since 10 = 0^2 + 1^2 + 3^2 + 0^2 with 1 < 3 and (0+8*1+8*3+15*0)^2 + (6*(0+1+3+0))^2 = 40^2. a(11) = 1 since 11 = 1^2 + 0^2 + 3^2 + 1^2 with 0 < 3 and (1+8*0+8*3+15*1)^2 + (6*(1+0+3+1))^2 = 50^2. a(14) = 1 since 14 = 3^2 + 1^2 + 2^2 + 0^2 with 1 < 2 and (3+8*1+8*2+15*0)^2 + (6*(3+1+2+0))^2 = 45^2. a(15) = 1 since 15 = 1^2 + 2^2 + 3^2 + 1^2 with 2 < 3 and (1+8*2+8*3+15*1)^2 + (6*(1+2+3+1))^2 = 70^2. a(21) = 1 since 21 = 2^2 + 2^2 + 3^2 + 2^2 with 2 < 3 and (2+8*2+8*3+15*2)^2 + (6*(2+2+3+2))^2 = 90^2. a(23) = 1 since 23 = 3^2 + 1^2 + 2^2 + 3^2 with 1 < 2 and (3+8*1+8*2+15*3)^2 + (6*(3+1+2+3))^2 = 90^2. a(29) = 1 since 29 = 0^2 + 2^2 + 5^2 + 0^2 with 2 < 5 and (0+8*2+8*5+15*0)^2 + (6*(0+2+5+0))^2 = 70^2. a(30) = 1 since 30 = 5^2 + 0^2 + 2^2 + 1^2 with 0 < 2 and (5+8*0+8*2+15*1)^2 + (6*(5+0+2+1))^2 = 60^2. a(35) = 1 since 35 = 3^2 + 1^2 + 4^2 + 3^2 with 1 < 4 and (3+8*1+8*4+15*3)^2 + (6*(3+1+4+3))^2 = 110^2. a(39) = 1 since 39 = 1^2 + 1^2 + 6^2 + 1^2 with 1 < 6 and (1+8*1+8*6+15*1)^2 + (6*(1+1+6+1))^2 = 90^2. a(46) = 1 since 46 = 6^2 + 0^2 + 3^2 + 1^2 with 0 < 3 and (6+8*0+8*3+15*1)^2 + (6*(6+0+3+1))^2 = 75^2. a(62) = 1 since 62 = 6^2 + 1^2 + 5^2 + 0^2 with 1 < 5 and (6+8*1+8*5+15*0)^2 + (6*(6+1+5+0))^2 = 90^2. a(71) = 1 since 71 = 3^2 + 2^2 + 7^2 + 3^2 with 2 < 7 and (3+8*2+8*7+15*3)^2 + (6*(3+2+7+3))^2 = 150^2. a(94) = 1 since 94 = 9^2 + 0^2 + 3^2 + 2^2 with 0 < 3 and (9+8*0+8*3+15*2)^2 + (6*(9+0+3+2))^2 = 105^2. a(95) = 1 since 95 = 5^2 + 3^2 + 6^2 + 5^2 with 3 < 6 and (5+8*3+8*6+15*5)^2 + (6*(5+3+6+5))^2 = 190^2. a(110) = 1 since 110 = 10^2 + 0^2 + 1^2 + 3^2 with 0 < 1 and (10+8*0+8*1+15*3)^2 + (6*(10+0+1+3))^2 = 105^2. a(142) = 1 since 142 = 11^2 + 1^2 + 4^2 + 2^2 with 1 < 4 and (11+8*1+8*4+15*2)^2 + (6*(11+1+4+2))^2 = 135^2. a(190) = 1 since 190 = 12^2 + 3^2 + 6^2 + 1^2 with 3 < 6 and (12+8*3+8*6+15*1)^2 + (6*(12+3+6+1))^2 = 165^2. a(238) = 1 since 238 = 13^2 + 2^2 + 8^2 + 1^2 with 2 < 8 and (13+8*2+8*8+15*1)^2 + (6*(13+2+8+1))^2 = 180^2. a(334) = 1 since 334 = 4^2 + 2^2 + 5^2 + 17^2 with 2 < 5 and (4+8*2+8*5+15*17)^2 + (6*(4+2+5+17))^2 = 357^2. a(446) = 1 since 446 = 17^2 + 6^2 + 11^2 + 0^2 with 6 < 11 and (17+8*6+8*11+15*0)^2 + (6*(17+6+11+0))^2 = 255^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(x+8*y+8*z+15*Sqrt[n-x^2-y^2-z^2])^2+36(x+y+z+Sqrt[n-x^2-y^2-z^2])^2],r=r+1],{x,0,Sqrt[n-1]},{y,0,(Sqrt[2(n-x^2)-1]-1)/2},{z,y+1,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]
Comments