cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 140 results. Next

A363825 The number of infinitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 3, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 19 2023

Keywords

Comments

First differs from A295878 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + If[OddQ[e], 2^DigitCount[e-1, 2, 1], 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 2^hammingweight(f[i, 2]-1) + 1, 1))};

Formula

Multiplicative with a(p^e) = 1 if e is even, and a(p^e) = 2^A000120(e-1) + 1 if e is odd.
a(n) <= A000005(n) with equality if and only if n is squarefree (A005117).

A374456 The Euler phi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 4, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 8, 12, 18, 28, 8, 30, 16, 20, 16, 24, 36, 18, 24, 16, 40, 12, 42, 22, 46, 32, 52, 18, 40, 24, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 40, 88, 72, 60, 46, 72, 32, 96
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to phi: A002618, A049200, A323333, A358039.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374457.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p-1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A000010(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A307868 / A065463^2 = 0.95051132596733153581... .

A385135 The sum of divisors d of n such that n/d is an exponentially odd number (A268335).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 13, 12, 18, 12, 24, 14, 24, 24, 26, 18, 36, 20, 36, 32, 36, 24, 52, 30, 42, 37, 48, 30, 72, 32, 53, 48, 54, 48, 72, 38, 60, 56, 78, 42, 96, 44, 72, 72, 72, 48, 104, 56, 90, 72, 84, 54, 111, 72, 104, 80, 90, 60, 144, 62, 96, 96, 106, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), this sequence (exponentially odd), A385136 (cubefull), A385137 (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := p^e + (p^(e+1) - If[EvenQ[e], p, 1])/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^e + (p^(e + 1) - if(e%2, 1, p))/(p^2 - 1));}

Formula

Multiplicative with a(p^e) = p^e + (p^(e+1) - 1)/(p^2-1) if e is odd, and p^e + (p^(e+1) - p)/(p^2-1) if e is even.
Dirichlet g.f.: zeta(s-1) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4) = 1.542116283140158741... .

A365173 The number of divisors d of n such that gcd(d, n/d) is an exponentially odd number (A268335).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2023

Keywords

Comments

First differs from A252505 at n = 64.
The sum of these divisors is A365174(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 5)/4] + Floor[(e + 6)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+5)\4 + (x+6)\4, factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X^2 - X^4)/((1 - X)^2*(1 + X^2)))[n], ", ")) \\ Vaclav Kotesovec, Jan 20 2024

Formula

Multiplicative with a(p^e) = floor((e+5)/4) + floor((e+6)/4) = A004524(e+5).
a(n) <= A000005(n), with equality if and only if n is not a biquadrateful number (A046101).
a(n) >= A034444(n), with equality if and only if n is squarefree (A005117).
a(n) == 1 (mod 2) if and only if n is a square of an exponentially odd number (i.e., a number whose prime factorization include only exponents e such that e == 2 (mod 4)).
From Vaclav Kotesovec, Jan 20 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/(p^(2*s)*(1 + p^(2*s)))).
Let f(s) = Product_{p prime} (1 - 1/(p^(2*s)*(1 + p^(2*s)))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/(p^2*(1 + p^2))) = 0.937494282731300250789438325050116436995101826036120273493270589183132928...,
f'(1) = f(1) * Sum_{p prime} (4*p^2 + 2) * log(p) / (p^6 + 2*p^4 - 1) = f(1) * 0.192452062257404507109731932640803706644036700262364333369815000973104583...
and gamma is the Euler-Mascheroni constant A001620. (End)

A325058 Starts of runs of 7 consecutive exponentially odd numbers (A268335).

Original entry on oeis.org

29, 37, 53, 101, 133, 181, 213, 373, 453, 509, 541, 613, 677, 757, 893, 901, 917, 997, 1109, 1117, 1157, 1189, 1237, 1253, 1333, 1405, 1429, 1477, 1509, 1541, 1589, 1621, 1701, 1749, 1757, 1765, 1829, 1885, 1941, 2077, 2117, 2133, 2181, 2213, 2261, 2333, 2341
Offset: 1

Views

Author

Amiram Eldar, Sep 04 2019

Keywords

Comments

The maximal run of consecutive exponentially odd numbers is of length 7 since numbers of the form 8k + 4 are not exponentially odd. Thus all the terms of this sequence are of the form 8k + 5 with k = 3, 4, 6, 12, 16, 22, 26, 46, 56, 63, 67, 76, 84, 94, ...
The number of terms below 10^k for k = 2, 3, ... is 3, 18, 201, 1878, 18902, 189515, 1895392, 18954089, ... Apparently this sequence has an asymptotic density of 0.01895...

Examples

			29 is in the sequence since 29, 30 = 2 * 3 * 5, 31, 32 = 2^5, 33 = 3 * 11, 34 = 2 * 17 and 35 = 5 * 7 are 7 consecutive exponentially odd numbers, all having prime factorization with only odd exponents.
		

Crossrefs

Cf. A268335.

Programs

  • Mathematica
    expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; aQ[n_] := AllTrue[8n + Range[5, 11], expOddQ]; 8 * Select[Range[300], aQ] + 5

A367406 The exponentially odd numbers (A268335) multiplied by their squarefree kernels (A007947).

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 16, 100, 121, 169, 196, 225, 289, 361, 441, 484, 529, 144, 676, 81, 841, 900, 961, 64, 1089, 1156, 1225, 1369, 1444, 1521, 400, 1681, 1764, 1849, 2116, 2209, 2601, 2809, 324, 3025, 784, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

Analogous to A355038, with the exponentially odd numbers instead of the square numbers (A000290).
This sequence is a permutation of the square numbers.

Crossrefs

Programs

  • Mathematica
    s[n_] := n * Times @@ FactorInteger[n][[;;, 1]]; s /@ Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^(f[i,2]+1), 0));}
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", ")));}

Formula

a(n) = A064549(A268335(n)).
a(n) = A268335(n)*A367417(n).
a(n) = A367407(n)^2.
a(n) = A268335(n)^2/A367418(n).
Sum_{k=1..n} a(k) = c * n^3 / 3, where c = (Pi^2/(15*d^3)) * Product_{p prime} (1 - 1/(p^3*(p+1))) = 1.78385074227198915372..., and d = A065463 is the asymptotic density of the exponentially odd numbers.
a(n) = A053143(A268335(n)). - Amiram Eldar, Nov 30 2023

A367801 Numbers that are both exponentially odd (A268335) and exponentially odious (A270428).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2023

Keywords

Comments

First differs from its subsequence A005117 at n = 79: a(79) = 128 is not a squarefree number.
First differs from A077377 at n = 63, and from A348506 at n = 68.
Numbers whose prime factorization contains only exponents that are odd odious numbers (A092246).
The asymptotic density of this sequence is Product_{p prime} f(1/p) = 0.61156148494581943994..., where f(x) = (1-x) * (1 + x/(2*(1-x^2)) + (Product_{k>=0} (1-(-x)^(2^k)) - Product_{k>=0} (1-x^(2^k))))/2.

Crossrefs

Intersection of A268335 and A270428.
Subsequences: A005117, A092759.
Cf. A092246.

Programs

  • Mathematica
    odQ[n_] := OddQ[n] && OddQ[DigitCount[n, 2, 1]]; Select[Range[150], AllTrue[FactorInteger[#][[;;, 2]], odQ] &]
  • PARI
    is(n) = {my(f = factor(n)); for (i = 1, #f~, if(!(f[i, 2]%2 && hammingweight(f[i, 2])%2), return (0))); 1;}

A367804 Numbers that are both exponentially odd (A268335) and exponentially evil (A262675).

Original entry on oeis.org

1, 8, 27, 32, 125, 216, 243, 343, 512, 864, 1000, 1331, 1944, 2197, 2744, 3125, 3375, 4000, 4913, 6859, 7776, 9261, 10648, 10976, 12167, 13824, 16807, 17576, 19683, 24389, 25000, 27000, 29791, 30375, 32768, 35937, 39304, 42592, 42875, 50653, 54872, 59319, 64000
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2023

Keywords

Comments

Numbers whose prime factorization contains only exponents that are odd evil numbers (A129771).

Crossrefs

Intersection of A262675 and A268335.
Cf. A129771.

Programs

  • Mathematica
    q[n_] := OddQ[n] && EvenQ[DigitCount[n, 2, 1]]; Select[Range[150], #== 1 || AllTrue[FactorInteger[#][[;;, 2]], q] &]
  • PARI
    is(n) = {my(f = factor(n)); for (i = 1, #f~, if(!(f[i, 2]%2) || hammingweight(f[i, 2])%2, return (0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^A129771(k)) = Product_{p prime} f(1/p) = 1.22183814098622400889..., where f(x) = 1 + (2*x/(1-x^2) + Product_{k>=0} (1 - x^(2^k)) - Product_{k>=0} (1 - (-x)^(2^k)))/4.

A365174 The sum of divisors d of n such that gcd(d, n/d) is an exponentially odd number (A268335).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 27, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 51, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 108, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 107, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2023

Keywords

Comments

The number of these divisors is A365173(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + p^e + If[EvenQ[e], (p^(e + 1) - p)/(p^2 - 1), (1 + p^(2*Floor[e/4] + 1))*(p^(2*Floor[(e + 1)/4] + 1) - p)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; 1 + p^e + if(e%2, (1 + p^(2*(e\4) + 1))*(p^(2*((e+1)\4) + 1) - p)/(p^2 - 1), (p^(e+1)-p)/(p^2-1)));}

Formula

Multiplicative with 1 + p^e + (p^(e + 1) - p)/(p^2 - 1) if e is even, and 1 + p^e + (1 + p^(2*floor(e/4)+1))*(p^(2*floor((e+1)/4)+1) - p)/(p^2 - 1) if e is odd.
a(n) <= A000203(n), with equality if and only if n is not a biquadrateful number (A046101).
a(n) >= A034448(n), with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)*zeta(6)/(2*zeta(3))) * Product_{p prime} (1 + 1/p^3 - 1/p^6) = 0.809912096042... .

A367418 The exponentially odd numbers (A268335) divided by their squarefree kernels (A007947).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 9, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

Analogous to A102631, with the exponentially odd numbers instead of the square numbers (A000290).
All the terms are square numbers.

Crossrefs

Programs

  • Mathematica
    s[n_] := n / Times @@ FactorInteger[n][[;; , 1]]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, f[i, 1]^(f[i, 2]-1), 0)); }
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", "))); }

Formula

a(n) = A003557(A268335(n)).
a(n) = A268335(n)/A367417(n).
a(n) = A367419(n)^2.
a(n) = A268335(n)^2/A367406(n).
a(n) = A008833(A268335(n)). - Amiram Eldar, Nov 30 2023
Previous Showing 11-20 of 140 results. Next