A270929 Numbers k such that (16*10^k - 31)/3 is prime.
1, 2, 3, 4, 15, 20, 24, 32, 38, 40, 63, 93, 104, 194, 208, 514, 535, 600, 928, 1300, 1485, 1780, 2058, 3060, 3356, 3721, 6662, 11552, 15482, 23000, 27375, 34748, 57219, 61251, 85221, 99656, 103214, 103244, 276537
Offset: 1
Examples
3 is in this sequence because (16*10^3 - 31)/3 = 5323 is prime. Initial terms and associated primes: a(1) = 1, 43; a(2) = 2, 523; a(3) = 3, 5323; a(4) = 4, 53323; a(5) = 15, 5333333333333323; a(6) = 20, 533333333333333333323, etc.
Links
- Makoto Kamada, Search for 53w23.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(16*10^# - 31)/3] &]
-
PARI
isok(n) = ispseudoprime((16*10^n - 31)/3); \\ Michel Marcus, Mar 26 2016
Extensions
a(37)-a(38) from Robert Price, Mar 03 2019
a(39) from Robert Price, Jul 13 2023
Comments