cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A296162 a(n) = [x^n] Product_{k>=1} ((1 - x^(3*k))/(1 - x^k))^n.

Original entry on oeis.org

1, 1, 5, 19, 89, 406, 1913, 9073, 43505, 209971, 1019390, 4971781, 24343037, 119579006, 589050663, 2908727839, 14393759457, 71360342129, 354372852011, 1762416036422, 8776797353574, 43761058841638, 218431753457637, 1091385769314272, 5458068218285909, 27319061357620056
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 - x^(3 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[(1 + x^k + x^(2 k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    (* Calculation of constant d: *) With[{k = 3}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k + x^(2*k))^n.
a(n) ~ c * d^n / sqrt(n), where d = 5.1069752682291604222843644516987970799026747758649349... and c = 0.271879273312907861082536692355942116774864... - Vaclav Kotesovec, May 13 2018

A304459 Coefficient of x^n in Product_{k>=1} (1+x^k)^(n^3).

Original entry on oeis.org

1, 1, 36, 3681, 770576, 276218900, 151479085752, 117975860569973, 123825991870849088, 168480096257782525419, 288418999876101261408100, 606652152400218992684850772, 1537897976017806908644807294656, 4624364862288125600795358272563097
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2018

Keywords

Comments

In general, for m>=3, coefficient of x^n in Product_{k>=1} (1+x^k)^(n^m) is asymptotic to n^(m*n)/n!.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+x^k)^(n^3), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2)^(n^3), {x, 0, n}], {n, 0, nmax}]

Formula

a(n) ~ exp(n) * n^(2*n - 1/2) / sqrt(2*Pi).

A386729 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^3) is the g.f. of A248882.

Original entry on oeis.org

1, 1, 17, 154, 1377, 13276, 127862, 1249746, 12321121, 122287798, 1220492192, 12235940113, 123133325382, 1243080020352, 12583773308102, 127688996851804, 1298370095026017, 13226355435367992, 134955405683954234, 1379032238329708409, 14110075394718902752, 144544237021110644340
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 31 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^(n*k^3), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[Sum[(-1)^(k/d + 1)*d^4, {d, Divisors[k]}]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} s_4(k)*x^k/k), where s_4(n) = Sum_{d divides n} (-1)^(n/d+1)*d^4 = A284900(n).
a(n) ~ c * d^n / sqrt(n), where d = 10.49088673566991578441632677715184699104285539252671173854512548234581416... and c = 0.2449508761900081824436717230940007974244164508939377916825513986093942...

A341395 Coefficient of x^(2*n) in (-1 + Product_{k>=1} (1 + x^k)^k)^n.

Original entry on oeis.org

1, 2, 14, 92, 662, 4872, 36578, 278161, 2135902, 16522967, 128574734, 1005321616, 7891885382, 62160038813, 491003317483, 3888045701232, 30854283708670, 245315312649653, 1953735732991919, 15583347966328833, 124463844976490422, 995305632560023009, 7968042676400949882
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
         `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k<2, g(n+1), (q->
          add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    Join[{1}, Table[SeriesCoefficient[(-1 + Product[(1 + x^k)^k, {k, 1, 2 n}])^n, {x, 0, 2 n}], {n, 1, 22}]]
    A[n_, k_] := A[n, k] = If[n == 0, 1, k Sum[A[n - j, k] Sum[(-1)^(j/d + 1) d^2, {d, Divisors[j]}], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; Table[T[2 n, n], {n, 0, 22}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 8.191928734348241613884260036383361206707761707495484130816183793791732456844... and c = 0.30227512720649344220720362916140286571342247518684432176920275576011986255... - Vaclav Kotesovec, Feb 20 2021

A369725 Maximal coefficient of ( (1 + x) * (1 + x^2) * (1 + x^3) * ... * (1 + x^n) )^n.

Original entry on oeis.org

1, 1, 4, 62, 4658, 1585430, 2319512420, 14225426190522, 361926393013029354, 37883831957216781279561, 16231015449888734994721650504, 28330316118212024049511095643949434, 200866780133770636272812495083578779133456, 5771133366532656054669819186294860881172794669798
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> max(coeffs(expand(mul(1+x^k, k=1..n)^n))):
    seq(a(n), n=0..14);  # Alois P. Heinz, Jan 30 2024
  • Mathematica
    Table[Max[CoefficientList[Product[(1 + x^k)^n, {k, 1, n}], x]], {n, 0, 13}]
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, (1+x^k))^n)); \\ Michel Marcus, Jan 30 2024

A382950 a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k)^n.

Original entry on oeis.org

1, 0, 6, 102, 1342, 20030, 306852, 4783534, 75873934, 1220259306, 19837742836, 325375411438, 5376744428812, 89412908941096, 1494992390431000, 25114561595879252, 423649216254936110, 7172523302899053230, 121828099966104173892, 2075321708914763792740
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k + y^k)^n, {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 19}]

Formula

a(n) ~ c * d^n / n, where d = 17.95370167248385600263... and c = 0.0600668009236121058... - Vaclav Kotesovec, Apr 10 2025
Previous Showing 21-26 of 26 results.