A276545
Numbers k such that (43*10^k - 421)/9 is prime.
Original entry on oeis.org
2, 5, 7, 8, 11, 13, 25, 26, 61, 82, 131, 289, 377, 547, 845, 929, 1786, 5887, 6562, 10546, 28033, 33493, 150515, 205183
Offset: 1
4 is in this sequence because (43*10^4 - 421)/9 = 477731 is prime.
Initial terms and associated primes:
a(1) = 2, 431;
a(2) = 5, 477731;
a(3) = 7, 47777731;
a(4) = 8, 477777731;
a(5) = 11, 477777777731; etc.
A276546
Numbers k such that (151*10^k - 1)/3 is prime.
Original entry on oeis.org
1, 3, 6, 15, 19, 34, 37, 88, 141, 216, 239, 246, 288, 365, 429, 762, 1879, 2309, 9555, 19843, 28348, 45058, 62879, 86963, 90669, 148020, 148601, 199003, 289877
Offset: 1
3 is in this sequence because (151*10^3 - 1)/3 = 50333 is prime.
Initial terms and associated primes:
a(1) = 1, 503;
a(2) = 3, 50333;
a(3) = 6, 50333333;
a(4) = 15, 50333333333333333;
a(5) = 19, 503333333333333333333; etc.
A276642
Numbers k such that 3*10^k + 89 is prime.
Original entry on oeis.org
2, 3, 4, 5, 6, 8, 10, 14, 15, 62, 98, 184, 190, 389, 430, 815, 918, 1124, 1284, 9544, 10068, 16514, 24756, 39880, 86478, 179138
Offset: 1
3 is in this sequence because 3*10^3 + 89 = 3089 is prime.
Initial terms and associated primes:
a(1) = 2, 389;
a(2) = 3, 3089;
a(3) = 4, 30089;
a(4) = 5, 300089;
a(5) = 6, 3000089; etc.
-
Select[Range[0, 100000], PrimeQ[3*10^# + 89] &]
-
isok(k) = ispseudoprime(3*10^k + 89); \\ Altug Alkan, Mar 30 2018
A276672
Numbers k such that (19*10^k + 101) / 3 is prime.
Original entry on oeis.org
1, 3, 4, 9, 10, 12, 13, 16, 20, 37, 57, 66, 106, 116, 127, 355, 396, 547, 2289, 3777, 4500, 7821, 15663, 22746, 25978, 30434, 39682, 119716, 133390, 145093, 200260
Offset: 1
3 is in this sequence because (19*10^3 + 101) / 3 = 6367 is prime.
Initial terms and associated primes:
a(1) = 1, 97;
a(2) = 3, 6367;
a(3) = 4, 63367;
a(4) = 9, 6333333367;
a(5) = 10, 63333333367, etc.
-
[n: n in [0..400] |IsPrime((19*10^n + 101) div 3)]; // Vincenzo Librandi, Sep 13 2016
-
Select[Range[0, 100000], PrimeQ[(19*10^# + 101) / 3] &]
-
is(n)=ispseudoprime((19*10^n + 101)/3) \\ Charles R Greathouse IV, Jun 13 2017
A276673
Numbers k such that 94*10^k - 3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 8, 19, 23, 25, 28, 65, 171, 183, 187, 295, 351, 471, 561, 634, 710, 1726, 3947, 4247, 6009, 11065, 13567, 94493, 147871, 182291
Offset: 1
3 is in this sequence because 94*10^n - 3 = 93997 is prime.
Initial terms and associated primes:
a(1) = 1, 937;
a(2) = 2, 9397;
a(3) = 3, 93997;
a(4) = 4, 939997;
a(5) = 8, 9399999997, etc.
-
Select[Range[0, 100000], PrimeQ[94*10^# - 3] &]
-
is(n)=ispseudoprime(94*10^n - 3) \\ Charles R Greathouse IV, Jun 13 2017
A276698
Numbers k such that (25*10^k - 37) / 3 is prime.
Original entry on oeis.org
1, 2, 7, 17, 24, 32, 66, 67, 74, 92, 104, 117, 188, 260, 279, 336, 348, 369, 547, 619, 860, 2735, 7932, 11874, 14867, 40153, 171849, 176715
Offset: 1
2 is in this sequence because (25*10^2 - 37) / 3 = 821 is prime.
Initial terms and associated primes:
a(1) = 1, 71;
a(2) = 2, 821;
a(3) = 7, 83333321;
a(4) = 17, 833333333333333321;
a(5) = 24, 8333333333333333333333321, etc.
-
Select[Range[0, 100000], PrimeQ[(25*10^# - 37) / 3] &]
-
is(n)=ispseudoprime((25*10^n - 37)/3) \\ Charles R Greathouse IV, Jun 13 2017
A276845
Numbers k such that (25*10^k - 73) / 3 is prime.
Original entry on oeis.org
1, 2, 5, 6, 40, 47, 49, 58, 67, 142, 170, 173, 232, 530, 539, 559, 1651, 1858, 2695, 6257, 6714, 8854, 15066, 15091, 16890, 51366, 85249, 135906
Offset: 1
2 is in this sequence because (25*10^2 - 73) / 3 = 809 is prime.
Initial terms and associated primes:
a(1) = 1, 59;
a(2) = 2, 809;
a(3) = 5, 833309;
a(4) = 6, 8333309;
a(5) = 40, 83333333333333333333333333333333333333309, etc.
-
[n: n in [0..500] | IsPrime((25*10^n - 73) div 3)]; // Vincenzo Librandi, Sep 22 2016
-
Select[Range[0, 100000], PrimeQ[(25*10^# - 73) / 3] &]
-
is(n) = ispseudoprime((25*10^n - 73) / 3); \\ Altug Alkan, Sep 20 2016
A276846
Numbers k such that (4*10^k + 143) / 3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 7, 9, 15, 21, 22, 44, 49, 53, 63, 127, 145, 393, 856, 1006, 1883, 2263, 5684, 13324, 14291, 27435, 38897, 114076
Offset: 1
2 is in this sequence because (4*10^2 + 143) / 3 = 1381 is prime.
Initial terms and associated primes:
a(1) = 1, 61;
a(2) = 2, 181;
a(3) = 3, 1381;
a(4) = 4, 13381;
a(5) = 7, 13333381, etc.
-
[n: n in [0..500] | IsPrime((4*10^n+143) div 3)]; // Vincenzo Librandi, Sep 22 2016
-
Select[Range[0, 100000], PrimeQ[(4*10^# + 143) / 3] &]
-
is(n) = ispseudoprime((4*10^n + 143) / 3); \\ Altug Alkan, Sep 20 2016
A277066
Numbers k such that (266*10^k - 11) / 3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 7, 9, 10, 14, 28, 58, 93, 121, 135, 207, 350, 423, 602, 859, 1026, 1864, 1966, 13738, 23299, 28126, 38691, 39403, 47499, 93577, 124022, 177577
Offset: 1
3 is in this sequence because (266*10^3 - 11) / 3 = 88663 is prime.
Initial terms and associated primes:
a(1) = 1, 883;
a(2) = 2, 8863;
a(3) = 3, 88663;
a(4) = 4, 886663;
a(5) = 7, 886666663, etc.
-
Select[Range[0, 100000], PrimeQ[(266*10^# - 11) / 3] &]
-
is(n)=ispseudoprime((266*10^n - 11)/3) \\ Charles R Greathouse IV, Jun 13 2017
A278334
Numbers k such that (856*10^k - 1) / 9 is prime.
Original entry on oeis.org
2, 3, 5, 8, 9, 15, 20, 24, 41, 63, 66, 99, 281, 300, 462, 686, 726, 1196, 1574, 2543, 3023, 5322, 12161, 13677, 33797, 137633
Offset: 1
3 is in this sequence because (856*10^3 - 1) / 9 = 95111 is prime.
Initial terms and associated primes:
a(1) = 2, 9511;
a(2) = 3, 95111;
a(3) = 5, 9511111;
a(4) = 8, 9511111111;
a(5) = 9, 95111111111; etc.
-
Select[Range[0, 100000], PrimeQ[(856*10^# - 1) / 9] &]
-
is(n)=ispseudoprime((856*10^n - 1)/9) \\ Charles R Greathouse IV, Jun 13 2017
Comments