cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A363573 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).

Original entry on oeis.org

1, 1, 3, 16, 99, 670, 4804, 35855, 275635, 2167577, 17354844, 140994899, 1159398760, 9631155422, 80703507043, 681333999628, 5789823864323, 49484286592503, 425092050147999, 3668385302806058, 31786451503719132, 276447315011186576, 2412336247105063011, 21114946136742383146
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 99*x^4 + 670*x^5 + 4804*x^6 + 35855*x^7 + 275635*x^8 + 2167577*x^9 + 17354844*x^10 + ...
such that
A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).
RELATED TABLE.
The table of coefficients in A(x)^n begins:
n=1: [1, 1,  3,  16,   99,   670,   4804,   35855,   275635, ...];
n=2: [1, 2,  7,  38,  239,  1634,  11798,   88506,   683045, ...];
n=3: [1, 3, 12,  67,  429,  2967,  21594,  162945,  1263183, ...];
n=4: [1, 4, 18, 104,  679,  4756,  34922,  265244,  2066591, ...];
n=5: [1, 5, 25, 150, 1000,  7101,  52645,  402725,  3155125, ...];
n=6: [1, 6, 33, 206, 1404, 10116,  75775,  584148,  4603911, ...];
n=7: [1, 7, 42, 273, 1904, 13930, 105490,  819918,  6503553, ...];
n=8: [1, 8, 52, 352, 2514, 18688, 143152, 1122312,  8962615, ...];
n=9: [1, 9, 63, 444, 3249, 24552, 190326, 1505727, 12110400, ...];
...
from which one can verify the formulas involving powers of A(x).
RELATED SERIES.
Let G(x) = 1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^3) )
where
G(x) = 1 + x + 2*x^2 + 9*x^3 + 42*x^4 + 219*x^5 + 1202*x^6 + 6867*x^7 + 40378*x^8 + 242782*x^9 + 1485836*x^10 + ...
then
A(x) = G(x*A(x)),
and so
A(x) = (1/x) * Series_Reversion( x/G(x) );
thus,
x*A(x) = (A(x) - 1) / (1 + (A(x) - 1)*(A(x)^2 + A(x)^3) )
which is equivalent to
A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1-A+x*(A-A^3+A^5), A), x, n+1), x, n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 14 2023
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = 1 + x*(A - A^3 + A^5) +x*O(x^n) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas.
(1) A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).
(2) A(x)^2 = 1 + x*(A(x) + A(x)^2 - A(x)^3 - A(x)^4 + A(x)^5 + A(x)^6).
(3) A(x)^3 = 1 + x*(A(x) + A(x)^2 - A(x)^4 + A(x)^6 + A(x)^7).
(4) A(x)^4 = 1 + x*(A(x) + A(x)^2 + A(x)^7 + A(x)^8).
(5) A(x)^5 = 1 + x*(A(x) + A(x)^2 + A(x)^5 + A(x)^8 + A(x)^9).
(6) A(x)^6 = 1 + x*(A(x) + A(x)^2 + A(x)^5 + A(x)^6 + A(x)^9 + A(x)^10).
(7) A(x)^7 = 1 + x*(A(x) + A(x)^2 + A(x)^5 + A(x)^6 + A(x)^7 + A(x)^10 + A(x)^11).
(8) A(x) = (1/x) * Series_Reversion( x/(1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^3) ) ) ).
(9) A(x) = 1 / A(-x*A(x)^5).

A371660 G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x) + A(x)^2).

Original entry on oeis.org

1, 3, 36, 603, 11745, 249372, 5599044, 130735620, 3142426428, 77238209502, 1932396279066, 49047725266101, 1259884849971465, 32690034127387431, 855528520866461010, 22556952666651901761, 598607836414445357145, 15976563963437863357146
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 3^(n-k)*binomial(n, k)*binomial(4*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 3^(n-k) * binomial(n,k) * binomial(4*n-k,n-1-2*k) for n > 0.

A378951 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/3)/(1 + x*A(x)) )^3.

Original entry on oeis.org

1, 3, 15, 94, 663, 5025, 39970, 329145, 2782095, 23999078, 210427869, 1869908364, 16802935370, 152425394958, 1393972037301, 12838326815582, 118970843349711, 1108503805898190, 10378559702646846, 97593299922016224, 921294705307189029
Offset: 0

Views

Author

Seiichi Manyama, Dec 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, s=-1, t=5, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies:
(1) A(x) = 1/( 1 - x*A(x)^(4/3)/(1 + x*A(x)) )^3.
(2) A(x) = 1 + x * A(x) * (1 + A(x)^(2/3) + A(x)^(4/3)).
(3) A(x) = B(x)^3 where B(x) is the g.f. of A271469.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
Previous Showing 11-13 of 13 results.