cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A333606 Number of directed Hamiltonian walks from NW to SW corners of a 10 X n grid.

Original entry on oeis.org

1, 1, 256, 1480, 117852, 1513468, 71154709, 1283569420, 47001928863, 1013346943033, 32440676063382, 771708613086275, 22928865477892898, 576390471202016758, 16424125813587374688, 425923820730159849603, 11854446538789342310672, 312866945593394069370317
Offset: 1

Views

Author

Seiichi Manyama, Mar 28 2020

Keywords

Crossrefs

Row n=10 of A271592.
Cf. A333585.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A271592(n, k):
        if k == 1: return 1
        universe = tl.grid(k - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def A333606(n):
        return A271592(10, n)
    print([A333606(n) for n in range(1, 8)])

Extensions

More terms from Ed Wynn, Jun 28 2023

A333602 Number of directed Hamiltonian walks from NW to SW corners of a 6 X n grid.

Original entry on oeis.org

1, 1, 16, 47, 397, 1770, 11658, 59946, 359962, 1958968, 11341696, 63142224, 360314940, 2024278172, 11485023624, 64758162416, 366573071464, 2069908196378, 11706322628832, 66139560111600, 373914808423830, 2113066820134474, 11944325099736622, 67505931650135578
Offset: 1

Views

Author

Seiichi Manyama, Mar 28 2020

Keywords

Crossrefs

Row n=6 of A271592.
Cf. A333581.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A271592(n, k):
        if k == 1: return 1
        universe = tl.grid(k - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def A333602(n):
        return A271592(6, n)
    print([A333602(n) for n in range(1, 10)])

Formula

a(n) = 5*a(n-1) + 14*a(n-2) - 63*a(n-3) + 12*a(n-4) + 90*a(n-5) - 35*a(n-6) - 66*a(n-7) + 118*a(n-8) - 8*a(n-9) - 82*a(n-10) + 42*a(n-11) + 28*a(n-12) - 4*a(n-13) + 2*a(n-14), n > 14. - Michael Gray, Jan 30 2022
G.f.: x*(1 - x)*(1 - 3*x - 6*x^2 + 10*x^3 - x^4 + 32*x^5 - 4*x^6 - 20*x^7 + 24*x^8 + 13*x^9 + 2*x^10 + 2*x^11)/(1 - 5*x - 14*x^2 + 63*x^3 - 12*x^4 - 90*x^5 + 35*x^6 + 66*x^7 - 118*x^8 + 8*x^9 + 82*x^10 - 42*x^11 - 28*x^12 + 4*x^13 - 2*x^14). - Andrew Howroyd, Jan 31 2022

Extensions

a(20)-a(24) from Michael Gray, Jan 31 2022

A333603 Number of directed Hamiltonian walks from NW to SW corners of a 7 X (2*n+1) grid.

Original entry on oeis.org

1, 32, 1584, 88418, 4999752, 283163450, 16039767268, 908585449166, 51467614908516, 2915428131919456, 165146980589118258, 9354895388703582168, 529916244425510621368, 30017569886372177468776, 1700371542421991554910438, 96319035592388073867700014, 5456076149237165677047910650
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2020

Keywords

Crossrefs

Row n=7 of A271592 (with 0 omitted).
Cf. A333582.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A271592(n, k):
        if k == 1: return 1
        universe = tl.grid(k - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def A333603(n):
        return A271592(7, 2 * n + 1)
    print([A333603(n) for n in range(20)])

Formula

Conjecture: a(n)= 85*a(n-1) -1932*a(n-2) +20403*a(n-3) -116734*a(n-4) +386724*a(n-5) -815141*a(n-6) +1251439*a(n-7) -1690670*a(n-8) +2681994*a(n-9) -4008954*a(n-10) +3390877*a(n-11) -1036420*a(n-12) -178842*a(n-13) +92790*a(n-14) +17732*a(n-15) -5972*a(n-16) +1728*a(n-17) +144*a(n-18). - R. J. Mathar, Mar 13 2023

A333605 Number of directed Hamiltonian walks from NW to SW corners of a 9 X (2*n+1) grid.

Original entry on oeis.org

1, 128, 28002, 7503654, 2087813834, 585874869236, 164719994049404, 46331085939142414, 13032851914297031372, 3666193548666012258524, 1031319586988812684556890, 290115923359022569718438776, 81611236566429170178900484740, 22957699681804739055041075650848
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2020

Keywords

Crossrefs

Row n=9 of A271592 (with 0 omitted).
Cf. A333584.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A271592(n, k):
        if k == 1: return 1
        universe = tl.grid(k - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def A333605(n):
        return A271592(9, 2 * n + 1)
    print([A333605(n) for n in range(15)])

A333903 Number of directed Hamiltonian paths in a 2*n X n grid starting at the upper left corner and finishing in the lower left corner.

Original entry on oeis.org

1, 1, 16, 264, 117852, 43399371, 443064195958, 3575671586791915, 831655228913958996424, 147303585340262824414389642, 774577888161337889995061257722609, 3015734636186832309974653370241824509796, 356606519352227259565296610082412177642016167446
Offset: 1

Views

Author

Seiichi Manyama, Apr 09 2020

Keywords

Examples

			a(1) = 1;
   S
   |
   *
   |
   E
a(2) = 1;
   S--*
      |
   *--*
   |
   *--*
      |
   E--*
a(3) = 16;
   S--*--*   S--*--*   S--*--*   S--*--*
         |         |         |         |
   *--*--*   *--*--*   *--*--*   *--*--*
   |         |         |         |
   *--*--*   *--*--*   *  *--*   *  *--*
         |         |   |  |  |   |  |  |
   *--*--*   *--*  *   *--*  *   *  *  *
   |         |  |  |         |   |  |  |
   *--*--*   *  *  *   *--*  *   *--*  *
         |   |  |  |   |  |  |         |
   E--*--*   E  *--*   E  *--*   E--*--*
   S--*--*   S--*--*   S--*--*   S--*--*
         |         |         |         |
   *--*  *   *--*  *   *--*  *   *--*  *
   |  |  |   |  |  |   |  |  |   |  |  |
   *  *--*   *  *--*   *  *  *   *  *  *
   |         |         |  |  |   |  |  |
   *--*--*   *  *--*   *  *--*   *  *  *
         |   |  |  |   |         |  |  |
   *--*  *   *--*  *   *--*--*   *  *  *
   |  |  |         |         |   |  |  |
   E  *--*   E--*--*   E--*--*   E  *--*
   S  *--*   S  *--*   S  *--*   S  *--*
   |  |  |   |  |  |   |  |  |   |  |  |
   *--*  *   *--*  *   *--*  *   *--*  *
         |         |         |         |
   *--*--*   *--*--*   *--*  *   *--*  *
   |         |         |  |  |   |  |  |
   *--*--*   *  *--*   *  *--*   *  *  *
         |   |  |  |   |         |  |  |
   *--*  *   *--*  *   *--*--*   *  *  *
   |  |  |         |         |   |  |  |
   E  *--*   E--*--*   E--*--*   E  *--*
   S  *--*   S  *--*   S  *--*   S  *--*
   |  |  |   |  |  |   |  |  |   |  |  |
   *  *  *   *  *  *   *  *  *   *  *  *
   |  |  |   |  |  |   |  |  |   |  |  |
   *--*  *   *--*  *   *  *  *   *  *  *
         |         |   |  |  |   |  |  |
   *--*--*   *--*  *   *--*  *   *  *  *
   |         |  |  |         |   |  |  |
   *--*--*   *  *  *   *--*  *   *--*  *
         |   |  |  |   |  |  |         |
   E--*--*   E  *--*   E  *--*   E--*--*
		

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333903(n):
        universe = tl.grid(n - 1, 2 * n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, 2 * n
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    print([A333903(n) for n in range(1, 8)])

Formula

a(n) = A271592(2*n,n).

Extensions

a(9), a(11), a(13) from Seiichi Manyama
a(8), a(10), a(12), a(14)-a(18) from Ed Wynn, Jun 28 2023
Previous Showing 11-15 of 15 results.