cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A330350 Table of strictly decreasing sequences with terms in {0, ..., 9}, sorted by length, then lexicographically.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2, 4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 6, 0, 6, 1, 6, 2, 6, 3, 6, 4, 6, 5, 7, 0, 7, 1, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 8, 0, 8, 1, 8, 2, 8, 3, 8, 4, 8, 5, 8, 6, 8, 7, 9, 0, 9, 1, 9, 2, 9, 3, 9, 4, 9, 5, 9, 6, 9, 7, 9, 8
Offset: 1

Views

Author

M. F. Hasler, Dec 11 2019

Keywords

Comments

Row n lists the digits of A009995(n), just as row n < 1024 of A272011 lists the digits of A262557(n).

Examples

			The first rows start
   n | row n
   1 | 0,
   2 | 1,
    ...
  10 | 9,
  11 | 1, 0,
  12 | 2, 0,
  13 | 2, 1,
  14 | 3, 0,
  15 | 3, 1,
  16 | 3, 2,
  17 | 4, 0,
    ...
The Sury paper lists the first rows of length 3, row 56 = (2, 1, 0), row 57 = (3, 1, 0), row 58 = (3, 2, 0), row 59 = (3, 2, 1), row 60 = (4, 1, 0), ...
		

Crossrefs

Programs

  • PARI
    concat(0,[digits(n)|n<-[1..99],is_A009995(n)])

A361376 Rewrite A129912(n), a product of distinct primorials P(i) = A002110(i) instead as a sum of powers 2^(i-1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 16, 11, 17, 12, 13, 18, 19, 32, 14, 33, 20, 15, 21, 34, 35, 22, 24, 64, 23, 36, 25, 65, 37, 26, 66, 38, 27, 67, 40, 128, 39, 41, 28, 68, 129, 29, 69, 42, 130, 48, 43, 30, 70, 72, 131, 49, 31, 71, 44, 73, 256, 132, 45, 50, 257, 133, 74, 51, 46, 80, 75, 258, 134, 136
Offset: 1

Views

Author

Michael De Vlieger, Jun 08 2023

Keywords

Comments

Permutation of nonnegative numbers.

Examples

			a(1) = 0 by convention.
a(8) = 8 comes before a(9) = 7, since we interpret 8 = 2^3 instead as P(4) = 210, while for a(9), 7 = 2^2 + 2^1 + 2^0 becomes P(3)*P(2)*P(1) = 30*6*2 = 360. Because 210 < 360, 8 appears before 7 in this sequence.
Table relating a(n), n=1..19 with the set S(n) of indices of distinct primorial factors of A129912(n):
   n A129912(n)  S(n)   a(n)  A272011(a(n))
  -----------------------------------------
   1         1            0
   2         2   1        1   0
   3         6   2        2   1
   4        12   2,1      3   1,0
   5        30   3        4   2
   6        60   3,1      5   2,0
   7       180   3,2      6   2,1
   8       210   4        8   3
   9       360   3,2,1    7   2,1,0
  10       420   4,1      9   3,0
  11      1260   4,2     10   3,1
  12      2310   5       16   4
  13      2520   4,2,1   11   3,1,0
  14      4620   5,1     17   4,0
  15      6300   4,3     12   3,2
  16     12600   4,3,1   13   3,2,0
  17     13860   5,2     18   4,1
  18     27720   5,2,1   19   4,1,0
  19     30030   6       32   5
  ...
		

Crossrefs

Programs

  • Mathematica
    a6939[n_] := Product[Prime[n + 1 - i]^i, {i, n}];
    g[m_] := Block[{f, j = 1},
      f[n_, i_, e_] :=
       If[n < m, Block[{p = Prime[i + 1]}, If[e == 1, Sow@ n];
         f[n p^e, i + 1, e];
         If[e > 1, f[n p^(e - 1), i + 1, e - 1]]]];
      Sort@ Reap[While[a6939[j] < m, f[2^j, 1, j]; j++]][[-1, 1]] ];
    Map[Total@
         Map[2^(# - 1) &,
          Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} ] &[
    FactorInteger[#][[All, -1]]] &, g[2^31]] (* Michael De Vlieger, Jun 08 2023, after Giovanni Resta at A129929 *)

Formula

Let S(n) be the set of indices of primorials P(i), reverse sorted, such that A129912(n) = Product_{k=1..m} S(n,k), where m = | S(n) |. Then a(n) = Sum_{k=1..m} 2^(S(n,k)-1).

A363235 a(0) = 1; let e be the largest multiplicity such that p^e | a(n); for n>0, a(n) = Sum_{j=1..k} 2^(e(j)-1) where k is the index of the greatest power factor p(k)^e(k) such that p(k-1)^e(k-1) > p(k)^(e(k)+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 144, 145, 146, 147, 148, 149, 150, 151, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267
Offset: 0

Views

Author

Michael De Vlieger, Jun 09 2023

Keywords

Comments

A binary compactification of A363250, this sequence rewrites A363250(n) = Product_{i=1..omega(a(n))} p(i)^e(i) instead as Sum_{i=1..omega(a(n))} e(i)-1.
Not a permutation of nonnegative integers.

Examples

			a(1) = 1 since 2^1 is a product of the smallest primes p(i) whose prime power factors decrease as i increases; Hence a(1) = 2^(e(i)-1) = 1.
a(2) = 2 since we can find no power 3^e with e>=1 that is smaller than 2^1, we increment the exponent of 2 and have 2^2, hence a(2) = 2^(e(i)-1) = 2.
a(3) = 3 since indeed we may multiply 2^2 by 3^1; 2^2 > 3^1, hence Sum_{i=1..2} 2^(e(i)-1) = 2^1 + 2^0 = 2+1 = 3.
Table relating this sequence to A363250.
b(n) = A363250(n), f(n) = A067255(n), g(n) = A272011(n), with the latter two
   n      b(n)  f(b(n))  a(n)  g(a(n))
  ------------------------------------
   1        1   0          0   -
   2        2   1          1   0
   3        4   2          2   1
   4       12   2,1        3   1,0
   5        8   3          4   2
   6       24   3,1        5   2,0
   7       16   4          8   3
   8       48   4,1        9   3,0
   9      144   4,2       10   3,1
  10      720   4,2,1     11   3,1,0
  11       32   5         16   4
  12       96   5,1       17   4,0
  13      288   5,2       18   4,1
  14     1440   5,2,1     19   4,1,0
  15      864   5,3       20   4,2
  16     4320   5,3,1     21   4,2,0
  17    21600   5,3,2     22   4,2,1
  18   151200   5,3,2,1   23   4,2,1,0
  19       64   6         32   5
  ...
Therefore, a(18) = 23 = 2^4 + 2^2 + 2^1 + 2^0 since b(18) = 151200 = 2^5 * 3^3 * 5^2 * 7^1.
The sequence is a series of intervals, organized so as to begin with 2^k, that begin as follows:
     0
     1
     2..3
     4..5
     8..11
    16..23
    32..39
    64..75
   128..139     144..151
   256..267     272..279
   512..523     528..535     544..559
  1024..1035   1040..1047   1056..1071
  2048..2059   2064..2071   2080..2095   2112..2127
  ...
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 300], AllTrue[Differences@ MapIndexed[Prime[First[#2]]^#1 &, Length[#] - Position[#, 1][[All, 1]] &@ IntegerDigits[#, 2] + 1], # < 0 &] &]

A363537 Rewrite A087980(n) = Product_{i=1..m} p(i)^e(i) instead as Sum_{i=1..m} 2^(i-1), where m = omega(A087980(n)) = A001221(A087980(n)).

Original entry on oeis.org

0, 1, 2, 4, 3, 8, 5, 16, 9, 32, 6, 17, 64, 10, 33, 128, 18, 7, 65, 12, 256, 34, 11, 129, 20, 512, 66, 19, 257, 36, 1024, 13, 130, 24, 35, 513, 68, 2048, 21, 258, 40, 67, 1025, 132, 4096, 37, 514, 72, 14, 131, 2049, 25, 260, 48, 8192, 69, 1026, 136, 22, 259, 4097, 41, 516, 80, 16384, 133, 2050, 264, 38
Offset: 1

Views

Author

Michael De Vlieger, Jun 09 2023

Keywords

Comments

Permutation of nonnegative numbers.
Rewriting nonnegative numbers n = Sum_{i=1..A000120(n)} 2^i instead as Product_{i=1..A000120(n)} p(i)^(e(i)+1) gives A362227.

Examples

			Table relating this sequence to A087980, where b(n) = A087980(n), f(n) = A067255(n), g(n) = A272011(n), and a(n)_2 the binary expansion of a(n):
   n   b(n)  f(b(n))  a(n)  g(a(n))   a(n)_2
   1     1   0         0
   2     2   1         1    0             1
   3     4   2         2    1            1.
   4     8   3         4    2           1..
   5    12   2,1       3    1,0          11
   6    16   4         8    3          1...
   7    24   3,1       5    2,0         1.1
   8    32   5        16    4         1....
   9    48   4,1       9    3,0        1..1
  10    64   6        32    5        1.....
  11    72   3,2       6    2,1         11.
  12    96   5,1      17    4,0       1...1
  13   128   7        64    6       1......
  14   144   4,2      10    3,1        1.1.
  15   192   6,1      33    5,0      1....1
  16   256   8       128    7      1.......
  17   288   5,2      18    4,1       1..1.
  18   360   3,2,1     7    2,1,0       111
  ...
		

Crossrefs

Programs

  • Mathematica
    m = 15; f[n_] := Times @@ MapIndexed[Prime[First[#2]]^(#1 + 1) &, Length[#] - Position[#, 1][[All, 1]]] &[IntegerDigits[n, 2]]; SortBy[Select[Array[{#, f[#]} &, 2^(m + 1)], Last[#] <= 2^m &], Last][[All, 1]]

Formula

a(2^k) = 2^(k-1) for k > 0.
a(A006939(k)) = 2^k-1 for k > 0.

A372325 Numbers whose binary expansion has an even number of 1's among positions listed in this sequence.

Original entry on oeis.org

0, 2, 5, 7, 8, 10, 13, 15, 16, 18, 21, 23, 24, 26, 29, 31, 33, 35, 36, 38, 41, 43, 44, 46, 49, 51, 52, 54, 57, 59, 60, 62, 64, 66, 69, 71, 72, 74, 77, 79, 80, 82, 85, 87, 88, 90, 93, 95, 97, 99, 100, 102, 105, 107, 108, 110, 113, 115, 116, 118, 121, 123, 124
Offset: 1

Views

Author

David A. Madore, Apr 27 2024

Keywords

Examples

			118 is in the sequence because 118 = 2^6 + 2^5 + 2^4 + 2^2 + 2^1, and an even number of the exponents 6,5,4,2,1 (namely 2,5) are in the sequence.
8192 is not in the sequence because 8192 = 2^13, and 13 is in the sequence.
		

Crossrefs

Programs

  • Maple
    R:= 0: RL:= [1]: nextp:= 2: m:= 1: count:= 0:
    for i from 1 while count < 100 do
      L:= convert(i,base,2);
      if i = nextp then
        nextp:= 2*nextp;
        if R[1+nops(RL)] = m then RL:= [op(RL),m+1] fi;
        m:= m+1;
      fi;
      if convert(L[RL],`+`)::even
      then R:= R,i; count:= count+1
      fi
    od:
    R; # Robert Israel, May 28 2024
  • Python
    from itertools import count, islice
    def agen():  # generator of terms
        aset = 0 # stored as a bitmask
        for k in count(0):
            if (k&aset).bit_count()%2 == 0:
                yield k
                aset += (1<Michael S. Branicky, Apr 28 2024
Previous Showing 11-15 of 15 results.