cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A272438 Primes of the form abs(-66n^3 + 3845n^2 - 60897n + 251831) in order of increasing nonnegative n.

Original entry on oeis.org

251831, 194713, 144889, 101963, 65539, 35221, 10613, 8681, 23057, 32911, 38639, 40637, 39301, 35027, 28211, 19249, 8537, 3529, 16553, 30139, 43891, 57413, 70309, 82183, 92639, 101281, 107713, 111539, 112363, 109789, 103421, 92863, 77719, 57593, 32089, 811
Offset: 1

Views

Author

Robert Price, Apr 29 2016

Keywords

Examples

			65539 is in this sequence since abs(-66*4^3 + 3845*4^2 - 60897*4 + 251831) = abs(-4224+61520-243588+251831) = 65539 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[-66n^3 + 3845n^2 - 60897n + 251831, PrimeQ[#] &]

A272437 Nonnegative numbers n such that abs(-66n^3 + 3845n^2 - 60897n + 251831) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 51, 54, 58, 65, 68, 70, 75, 76, 77, 82, 88, 89, 97, 99, 101, 102, 104, 109
Offset: 1

Views

Author

Robert Price, Apr 29 2016

Keywords

Comments

46 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(-66*4^3 + 3845*4^2 - 60897*4 + 251831) = abs(-4224+61520-243588+251831) = 65539 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 109], PrimeQ[-66#^3 + 3845#^2 - 60897# + 251831] &]
  • PARI
    is(n)=isprime(abs(66*n^3-3845*n^2+60897*n-251831)) \\ Charles R Greathouse IV, Feb 20 2017

A272444 Primes of the form abs(n^5 - 99n^4 + 3588n^3 - 56822n^2 + 348272n - 286397) in order of increasing nonnegative n.

Original entry on oeis.org

286397, 8543, 210011, 336121, 402851, 424163, 412123, 377021, 327491, 270631, 212123, 156353, 106531, 64811, 32411, 9733, 3517, 8209, 5669, 2441, 14243, 27763, 41051, 52301, 59971, 62903, 60443, 52561, 39971, 24251, 7963, 5227, 10429, 1409, 29531, 91673
Offset: 1

Views

Author

Robert Price, Apr 29 2016

Keywords

Examples

			402851 is in this sequence since abs(4^5 - 99*4^4 + 3588*4^3 - 56822*4^2 + 348272*4 - 286397) = abs(1024-25344+229632-909152+1393088-286397) = 402851 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[n^5 - 99n^4 + 3588n^3 - 56822n^2 + 348272n - 286397, PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=abs(n^5-99*n^4+3588*n^3-56822*n^2+348272*n-286397)), print1(p, ", "))); \\ Altug Alkan, Apr 29 2016

A272323 Nonnegative numbers n such that abs(82n^3 - 1228n^2 + 6130n - 5861) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 37, 39, 41, 43, 47, 49, 50, 53, 54, 55, 59, 61, 63, 64, 67, 72, 73, 75, 76, 81, 84, 86, 87, 88, 89, 90, 92, 95, 97, 98, 102, 103, 104
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Comments

32 is the smallest number not in this sequence.

Examples

			4 is in this sequence since 82*4^3 - 1228*4^2 + 6130*4 - 5861 = 5248-19648+24520-5861 = 4259 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[82#^3 - 1228#^2 + 6130# - 5861] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(abs(82*n^3-1228*n^2+6130*n-5861)), print1(n, ", "))); \\ Altug Alkan, Apr 25 2016

A272410 Primes of the form abs(n^4 - 97n^3 + 3294n^2 - 45458n + 213589) in order of increasing nonnegative n.

Original entry on oeis.org

213589, 171329, 135089, 104323, 78509, 57149, 39769, 25919, 15173, 7129, 1409, 2341, 4451, 5227, 4951, 3881, 2251, 271, 1873, 4019, 6029, 7789, 9209, 10223, 10789, 10889, 10529, 9739, 8573, 7109, 5449, 3719, 2069, 673, 271, 541, 109, 1949, 5273, 10399, 17669
Offset: 1

Views

Author

Robert Price, Apr 30 2016

Keywords

Examples

			78509 is in this sequence since abs(4^4 - 97*4^3 + 3294*4^2 - 45458*4 + 213589) = abs(256-6208+52704-181832+213589) = 78509 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[n^4 - 97n^3 + 3294n^2 - 45458n + 213589, PrimeQ[#] &]

A272443 Nonnegative numbers n such that abs(n^5 - 99n^4 + 3588n^3 - 56822n^2 + 348272n - 286397) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 53, 57, 58, 59, 64, 67, 70, 75, 79, 80, 81, 89, 91, 92, 93, 96, 99
Offset: 1

Views

Author

Robert Price, Apr 29 2016

Keywords

Comments

47 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(4^5 - 99*4^4 + 3588*4^3 - 56822*4^2 + 348272*4 - 286397) = abs(1024-25344+229632-909152+1393088-286397) = 402851 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[#^5 - 99#^4 + 3588#^3 - 56822#^2 + 348272# - 286397] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(abs(n^5-99*n^4+3588*n^3-56822*n^2+348272*n-286397)), print1(n, ", "))); \\ Altug Alkan, Apr 29 2016

A267252 Primes of the form abs(103*n^2 - 4707*n + 50383) in order of increasing nonnegative n.

Original entry on oeis.org

50383, 45779, 41381, 37189, 33203, 29423, 25849, 22481, 19319, 16363, 13613, 11069, 8731, 6599, 4673, 2953, 1439, 131, 971, 1867, 2557, 3041, 3319, 3391, 3257, 2917, 2371, 1619, 661, 503, 1873, 3449, 5231, 7219, 9413, 11813, 14419, 17231, 20249, 23473, 26903
Offset: 1

Views

Author

Robert Price, Apr 28 2016

Keywords

Comments

This polynomial is a transformed version of the polynomial P(x) = 103*x^2 + 31*x - 3391 whose absolute value gives 43 distinct primes for -23 <= x <= 19, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019

Examples

			33203 is in this sequence since 103*4^2 - 4707*4 + 50383  = 1648-18828+50383 = 33203 is prime.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Abs @ Select[103n^2 - 4707n + 50383 , PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=abs(103*n^2-4707*n+50383)), print1(p, ", "))); \\ Altug Alkan, Apr 28 2016, corrected by Hugo Pfoertner, Dec 13 2019

Extensions

Title corrected by Hugo Pfoertner, Dec 13 2019

A268200 Nonnegative numbers n such that abs(n^4 - 97n^3 + 3294n^2 - 45458n + 213589) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 62, 65, 67, 70, 72, 73, 74, 75, 84, 85, 86, 90, 92
Offset: 1

Views

Author

Robert Price, Apr 30 2016

Keywords

Comments

50 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(4^4 - 97*4^3 + 3294*4^2 - 45458*4 + 213589) = abs(256-6208+52704-181832+213589) = 78509 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[#^4 - 97#^3 + 3294#^2 - 45458# + 213589] &]
  • PARI
    is(n)=isprime(abs(n^4-97*n^3+3294*n^2-45458*n+213589)) \\ Charles R Greathouse IV, Feb 20 2017

A272555 Primes of the form abs(1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236)) in order of increasing nonnegative n.

Original entry on oeis.org

965201, 653687, 429409, 272563, 166693, 98321, 56597, 32969, 20873, 15443, 13241, 12007, 10429, 7933, 4493, 461, 3583, 6961, 9007, 9157, 7019, 2423, 4549, 13553, 23993, 35051, 45737, 54959, 61613, 64693, 63421, 57397, 46769, 32423, 16193, 1091, 8443, 6271
Offset: 1

Views

Author

Robert Price, May 02 2016

Keywords

Examples

			166693 is in this sequence since abs(1/(36)(4^6 - 126*4^5 + 6217*4^4 - 153066*4^3 + 1987786*4^2 - 13055316*4 + 34747236)) = abs((4096 - 129024 + 1591552 - 9796224 + 31804576 - 5222126 + 34747236)/36) = 166693 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236), PrimeQ[#] &]

A272077 Primes of the form abs(7*k^2 - 371*k + 4871) in order of increasing nonnegative values of k.

Original entry on oeis.org

4871, 4507, 4157, 3821, 3499, 3191, 2897, 2617, 2351, 2099, 1861, 1637, 1427, 1231, 1049, 881, 727, 587, 461, 349, 251, 167, 97, 41, 29, 43, 43, 29, 41, 97, 167, 251, 349, 461, 587, 727, 881, 1049, 1231, 1427, 1637, 1861, 2099, 2351, 2617, 2897, 3191
Offset: 1

Views

Author

Robert Price, Apr 19 2016

Keywords

Comments

For k=0 to 23, this expression generates 24 primes that decrease from 4871 to 41. It generates duplicates and the absolute value is used to avoid negative terms. The same 24 primes but in reverse order are generated in the same range of the argument by 7*k^2+49*k+41, which produces neither duplicates nor negative values and is one of relatively few quadratics with at most two-digit coefficients that generate at least 20 primes in a row. We have: 7*(n-30)^2 + 49*(n-30) + 41 = 7*n^2 - 371*n + 4871. - Waldemar Puszkarz, Feb 02 2018
See also A298078, the values of 7*n^2-7*n-43, which also contains the same 24 primes without duplicates. - N. J. A. Sloane, Mar 10 2018

Examples

			4157 is in this sequence since 7*2^2 - 371*2 + 4871 = 28-742-4871 = 4157 is prime.
		

Crossrefs

Programs

  • GAP
    Filtered(List([0..10^2],n->7*n^2-371*n+4871),IsPrime); # Muniru A Asiru, Feb 04 2018
  • Maple
    select(isprime, [seq(7*n^2-371*n+4871, n=0..10^2)]); # Muniru A Asiru, Feb 04 2018
  • Mathematica
    n = Range[0, 100]; Select[Abs[7n^2 - 371n + 4871], PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(p=abs(7*n^2-371*n+4871)), print1(p, ", "))); \\ Altug Alkan, Apr 19 2016
    
Previous Showing 11-20 of 29 results. Next