cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A275100 Number of set partitions of [3*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.

Original entry on oeis.org

1, 5, 16, 64, 298, 1540, 8506, 48844, 286498, 1699300, 10136746, 60643324, 363328498, 2178376660, 13065476986, 78378513004, 470228031298, 2821239047620, 16927046865226, 101561118929884, 609363226794898, 3656168900416180, 21936982021437466, 131621797985445964
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2016

Keywords

Crossrefs

Row n=3 of A275043.

Programs

  • Mathematica
    CoefficientList[Series[-(21x^3-7x^2-5x+1)/((x-1)(6x-1)(3x-1)),{x,0,30}],x] (* Harvey P. Dale, Dec 15 2018 *)

Formula

G.f.: -(21*x^3-7*x^2-5*x+1)/((x-1)*(6*x-1)*(3*x-1)).

A275101 Number of set partitions of [4*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.

Original entry on oeis.org

1, 15, 131, 1613, 25097, 461105, 9483041, 209175233, 4802367617, 112660505345, 2672797504001, 63775070743553, 1526140298561537, 36573850636201985, 877130337148149761, 21043423870122115073, 504949726500343545857, 12117684104978986369025
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2016

Keywords

Crossrefs

Row n=4 of A275043.

Programs

  • Mathematica
    LinearRecurrence[{47,-718,4416,-10656,6912},{1,15,131,1613,25097,461105},20] (* Harvey P. Dale, Apr 30 2022 *)

Formula

G.f.: -(14112*x^5-12240*x^4+1810*x^3+144*x^2-32*x+1) / ((x-1) *(6*x-1) *(24*x-1) *(12*x-1) *(4*x-1)).

A275102 Number of set partitions of [5*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.

Original entry on oeis.org

1, 52, 1496, 69026, 4383626, 350813126, 33056715626, 3464129078126, 386652630390626, 44687884101953126, 5260857687009765626, 625229219690048828126, 74663901894300244140626, 8937876284201001220703126, 1071238363160070006103515626, 128470217809820900030517578126
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2016

Keywords

Crossrefs

Row n=5 of A275043.

Formula

G.f.: -(685800000*x^7 -675420000*x^6 +136905500*x^5 -8043550*x^4 +17550*x^3 +9249*x^2 -194*x+1) / ((x-1) *(30*x-1) *(5*x-1) *(60*x-1) *(10*x-1) *(120*x-1) *(20*x-1)).

A345400 Number of colored set partitions of [n] where (i mod d) identifies the color of i and d is the number of available colors such that within each block the frequency of all colors is equal.

Original entry on oeis.org

1, 1, 3, 6, 19, 53, 225, 878, 4281, 21212, 117489, 678571, 4238024, 27644438, 191326221, 1383029112, 10490101937, 82864869805, 682358388107, 5832742205058, 51733248275075, 474870253871245, 4507061060486642, 44152005855084347, 445973953222607799
Offset: 0

Views

Author

Alois P. Heinz, Jun 17 2021

Keywords

Comments

All block lengths and n are multiples of the number of available colors d.

Examples

			a(0) = 1: (), the empty partition.
a(1) = 1: 1a.
a(2) = 3: 1a2b, 1a2a, 1a|2a.
a(3) = 6: 1a2b3c, 1a2a3a, 1a2a|3a, 1a3a|2a, 1a|2a3a, 1a|2a|3a.
a(4) = 19: 1a2b3c4d, 1a2b3a4b, 1a2b|3a4b, 1a4b|2b3a, 1a2a3a4a, 1a2a3a|4a, 1a2a4a|3a, 1a2a|3a4a, 1a2a|3a|4a, 1a3a4a|2a, 1a3a|2a4a, 1a3a|2a|4a, 1a4a|2a3a, 1a|2a3a4a, 1a|2a3a|4a, 1a4a|2a|3a, 1a|2a4a|3a, 1a|2a|3a4a, 1a|2a|3a|4a.
Here the colors a, b, c, ... are used.
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          binomial(n, j)^k*(n-j)*A(j, k), j=0..n-1)/n)
        end:
    a:= n-> `if`(n=0, 1, add(A(n/d, d), d=numtheory[divisors](n))):
    seq(a(n), n=0..28);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Binomial[n, j]^k*(n - j)*A[j, k], {j, 0, n - 1}]/n];
    a[n_] := If[n == 0, 1, Sum[A[n/d, d], {d, Divisors[n]}]];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Aug 25 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{d|n} A275043(n/d,d) for n > 0, a(0) = 1.
a(p) = 1 + A000110(p) for prime p.
Previous Showing 11-14 of 14 results.