cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A284294 Numbers using only digits 1 and 9.

Original entry on oeis.org

1, 9, 11, 19, 91, 99, 111, 119, 191, 199, 911, 919, 991, 999, 1111, 1119, 1191, 1199, 1911, 1919, 1991, 1999, 9111, 9119, 9191, 9199, 9911, 9919, 9991, 9999, 11111, 11119, 11191, 11199, 11911, 11919, 11991, 11999, 19111, 19119, 19191, 19199, 19911, 19919
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Product of digits of terms is a power of 9; subsequence of A284295.
Prime terms are in A020457.

Crossrefs

Cf. Numbers using only digits 1 and k for k = 0 and k = 2 - 9: A007088 (k = 0), A007931 (k = 2), A032917 (k = 3), A032822 (k = 4) , A276037 (k = 5), A284293 (k = 6), A276039 (k = 7), A213084 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..20000] | Set(IntegerToSequence(n, 10)) subset {1, 9}];
  • Mathematica
    Join @@ (FromDigits /@ Tuples[{1,9}, #] & /@ Range[5]) (* Giovanni Resta, Mar 25 2017 *)

Formula

The sum of first 2^n terms is (5*20^n + 38*10^n - 95*2^n + 1420)/171. - Giovanni Resta, Mar 25 2017

A284323 Numbers k such that product of digits of k is a power of 4.

Original entry on oeis.org

1, 4, 11, 14, 22, 28, 41, 44, 82, 88, 111, 114, 122, 128, 141, 144, 182, 188, 212, 218, 221, 224, 242, 248, 281, 284, 411, 414, 422, 428, 441, 444, 482, 488, 812, 818, 821, 824, 842, 848, 881, 884, 1111, 1114, 1122, 1128, 1141, 1144, 1182, 1188, 1212, 1218
Offset: 0

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 4^0.
		

Crossrefs

Supersequence of A032822.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), this sequence (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 4^k]));
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[2^Range[0, 3], #] &, Range@ 4], IntegerQ@ Log[4, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A284381 Numbers k with digits 5 and 8 only.

Original entry on oeis.org

5, 8, 55, 58, 85, 88, 555, 558, 585, 588, 855, 858, 885, 888, 5555, 5558, 5585, 5588, 5855, 5858, 5885, 5888, 8555, 8558, 8585, 8588, 8855, 8858, 8885, 8888, 55555, 55558, 55585, 55588, 55855, 55858, 55885, 55888, 58555, 58558, 58585, 58588, 58855, 58858
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2017

Keywords

Comments

All terms except the first are composite.

Crossrefs

Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), A284379 (k = 3), A256290 (k = 4), A256291 (k = 6), A284380 (k = 7), this sequence (k = 8), A284382 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {5, 8}];
    
  • Mathematica
    Join @@ ((FromDigits /@ Tuples[{5, 8}, #]) & /@ Range@ 5) (* Giovanni Resta, Mar 28 2017 *)
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '5').replace('1', '8'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 08 2021

Formula

a(n) = (A284380(n)+A284382(n))/2. - Robert Israel, Mar 28 2017

A284382 Numbers k with digits 5 and 9 only.

Original entry on oeis.org

5, 9, 55, 59, 95, 99, 555, 559, 595, 599, 955, 959, 995, 999, 5555, 5559, 5595, 5599, 5955, 5959, 5995, 5999, 9555, 9559, 9595, 9599, 9955, 9959, 9995, 9999, 55555, 55559, 55595, 55599, 55955, 55959, 55995, 55999, 59555, 59559, 59595, 59599, 59955, 59959
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2017

Keywords

Comments

Prime terms are in A020468.

Crossrefs

Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), A284379 (k = 3), A256290 (k = 4), A256291 (k = 6), A284380 (k = 7), A284381 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {5, 9}];
    
  • Mathematica
    Join @@ ((FromDigits /@ Tuples[{5, 9}, #]) & /@ Range@ 5) (* Giovanni Resta, Mar 28 2017 *)
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '5').replace('1', '9'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 09 2021

A316315 Numbers k such that the product of digits of k is a power of 12.

Original entry on oeis.org

1, 11, 26, 34, 43, 62, 111, 126, 134, 143, 162, 216, 223, 232, 261, 289, 298, 314, 322, 341, 368, 386, 413, 431, 449, 466, 494, 612, 621, 638, 646, 664, 683, 829, 836, 863, 892, 928, 944, 982, 1111, 1126, 1134, 1143, 1162, 1216, 1223, 1232, 1261, 1289, 1298
Offset: 1

Views

Author

Isaac Weiss and Henry Potts-Rubin, Jun 29 2018

Keywords

Examples

			466 is in the sequence because 4*6*6 = 144 = 12^2.
		

Crossrefs

Programs

  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 2, 3, 4, 6, 8, 9}, #] &, Range@4], IntegerQ@Log[12, Times @@ #] &]

Extensions

Two duplicate terms removed by Alois P. Heinz, Oct 20 2019

A385324 Numbers whose digits are all powers of the same single-digit base.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 28, 31, 33, 39, 41, 42, 44, 48, 51, 55, 61, 66, 71, 77, 81, 82, 84, 88, 91, 93, 99, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 124, 128, 131, 133, 139, 141, 142, 144, 148
Offset: 1

Views

Author

Stefano Spezia, Jun 25 2025

Keywords

Examples

			84 is a term since its digits 8 and 4 are both powers of 2.
		

Crossrefs

Cf. A385351 (subsequence)

Programs

  • Mathematica
    Select[Range[0,148],SubsetQ[{0},dig=IntegerDigits[#]]||SubsetQ[{1,2,4,8},dig]||SubsetQ[{1,3,9},dig]||SubsetQ[{1,5},dig]||SubsetQ[{1,6},dig]||SubsetQ[{1,7},dig] &]

Formula

Previous Showing 11-16 of 16 results.