A277630
Positive integers n such that 3^n == 8 (mod n).
Original entry on oeis.org
1, 5, 2352527, 193841707, 17126009179703, 380211619942943
Offset: 1
Solutions to 3^n == k (mod n):
A277340 (k=-11),
A277289 (k=-7),
A277288 (k=-5),
A015973 (k=-2),
A015949 (k=-1),
A067945 (k=1),
A276671 (k=2),
A276740 (k=5),
A277628 (k=6),
A277126 (k=7), this sequence (k=8),
A277274 (k=11).
A333269
Positive integers n such that 17^n == 2 (mod n).
Original entry on oeis.org
1, 3, 5, 3585, 4911, 5709, 1688565, 7361691, 16747709, 3226850283899, 8814126944005, 33226030397603
Offset: 1
-
for(k=1, 1e6, if(Mod(17, k)^k==2, print1(k", ")))
-
A333269_list = [n for n in range(1,10**6) if n == 1 or pow(17,n,n) == 2] # Chai Wah Wu, Mar 14 2020
A333134
Positive integers k such that 11^k == 2 (mod k).
Original entry on oeis.org
1, 3, 413, 1329, 6587, 11629, 75761, 925071199, 9031140861789, 114876097917387, 1314252479257933
Offset: 1
-
for(k=1, 1e6, if(Mod(11, k)^k==2, print1(k", ")))
Comments