cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A276879 Sums-complement of the Beatty sequence for 1 + sqrt(2).

Original entry on oeis.org

1, 6, 11, 18, 23, 30, 35, 40, 47, 52, 59, 64, 69, 76, 81, 88, 93, 100, 105, 110, 117, 122, 129, 134, 139, 146, 151, 158, 163, 170, 175, 180, 187, 192, 199, 204, 209, 216, 221, 228, 233, 238, 245, 250, 257, 262, 269, 274, 279, 286, 291, 298, 303, 308, 315
Offset: 1

Views

Author

Clark Kimberling, Sep 27 2016

Keywords

Comments

See A276871 for a definition of sums-complement and guide to related sequences.

Examples

			The Beatty sequence for 1 + sqrt(2) is A003151 = (0,2,4,7,9,12,14,16,...), with difference sequence s = A276862 = (2,2,3,2,3,2,2,3,2,3,2,2,3,2,3,...).  The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,7,8,9,12,...), with complement (1,6,11,18,23,...).
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = 1+Sqrt[2]; b = Table[Floor[k*r], {k, 0, z}]; (* A003151 *)
    t = Differences[b]; (* A276862 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]  (* A276879 *)

A276882 Sums-complement of the Beatty sequence for 2 + sqrt(2).

Original entry on oeis.org

1, 2, 5, 8, 9, 12, 15, 16, 19, 22, 25, 26, 29, 32, 33, 36, 39, 42, 43, 46, 49, 50, 53, 56, 57, 60, 63, 66, 67, 70, 73, 74, 77, 80, 83, 84, 87, 90, 91, 94, 97, 98, 101, 104, 107, 108, 111, 114, 115, 118, 121, 124, 125, 128, 131, 132, 135, 138, 141, 142, 145
Offset: 1

Views

Author

Clark Kimberling, Sep 27 2016

Keywords

Comments

See A276871 for a definition of sums-complement and guide to related sequences.

Examples

			The Beatty sequence for 2 + sqrt(2) is A001952 = (0,3,6,10,13,17,20, 23,27,...), with difference sequence s = A276864 = (3,3,4,3,4,3,3,4,3,4,3,3,4,3,4,...). The sums s(j)+s(j+1)+...+s(k) include (3,4,6,7,10,11,13,14,17,...), with complement (1,2,5,8,9,12,15,...).
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = 2+Sqrt[2]; b = Table[Floor[k*r], {k, 0, z}]; (* A001952 *)
    t = Differences[b]; (* A276864 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]  (* A276882 *)

A276883 Sums-complement of the Beatty sequence for 2 + sqrt(3).

Original entry on oeis.org

1, 2, 5, 6, 9, 10, 13, 16, 17, 20, 21, 24, 25, 28, 31, 32, 35, 36, 39, 40, 43, 46, 47, 50, 51, 54, 57, 58, 61, 62, 65, 66, 69, 72, 73, 76, 77, 80, 81, 84, 87, 88, 91, 92, 95, 96, 99, 102, 103, 106, 107, 110, 113, 114, 117, 118, 121, 122, 125, 128, 129, 132
Offset: 1

Views

Author

Clark Kimberling, Sep 27 2016

Keywords

Comments

See A276871 for a definition of sums-complement and guide to related sequences.

Examples

			The Beatty sequence for 2 + sqrt(3) is A003512 = (0,3,7,11,14,18,22,26,...), with difference sequence s = A276865 = (3,4,4,3,4,4,4,3,4,4,4,3,4,4,3,...). The sums s(j)+s(j+1)+...+s(k) include (3,4,7,8,11,12,14,15,18,...), with complement (1,2,5,6,9,10,13,...).
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = 2 + Sqrt[3]; b = Table[Floor[k*r], {k, 0, z}]; (* A003512 *)
    t = Differences[b]; (* A276865 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]  (* A276883 *)

A276884 Sums-complement of the Beatty sequence for 2 + sqrt(5).

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 20, 23, 24, 27, 28, 31, 32, 35, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 54, 57, 58, 61, 62, 65, 66, 69, 70, 71, 74, 75, 78, 79, 82, 83, 86, 87, 90, 91, 92, 95, 96, 99, 100, 103, 104, 107, 108, 109, 112, 113, 116, 117
Offset: 1

Views

Author

Clark Kimberling, Oct 01 2016

Keywords

Comments

See A276871 for a definition of sums-complement and guide to related sequences.

Examples

			The Beatty sequence for 2 + sqrt(5) is A004976 = (0,4,8,12,16,21,25,29, 33,38,42,46,50,55,59,63,...) with difference sequence s = A276866 = (4,4,4,4,5,4,4,4,5,4,4,4,5,4,4,...).  The sums s(j)+s(j+1)+...+s(k) include (4,5,8,9,12,13,16,...), with complement (1,2,3,6,7,10,11,14,...). - corrected by _Michel Dekking_, Jan 30 2017
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = 2 + Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A004076 *)
    t = Differences[b]; (* A276866 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w];  (* A276884 *)

A276887 Sums-complement of the Beatty sequence for 3 + tau.

Original entry on oeis.org

1, 2, 3, 6, 7, 8, 11, 12, 15, 16, 17, 20, 21, 22, 25, 26, 29, 30, 31, 34, 35, 38, 39, 40, 43, 44, 45, 48, 49, 52, 53, 54, 57, 58, 59, 62, 63, 66, 67, 68, 71, 72, 75, 76, 77, 80, 81, 82, 85, 86, 89, 90, 91, 94, 95, 98, 99, 100, 103, 104, 105, 108, 109, 112
Offset: 1

Views

Author

Clark Kimberling, Oct 01 2016

Keywords

Comments

See A276871 for a definition of sums-complement and guide to related sequences.

Examples

			The Beatty sequence for 3 + tau is A276855 = (-,4,9,13,18,23,27,...), with difference sequence s = A276868 = (4,5,4,5,5,4,5,4,5,5,4,5,5,4,5,4,...).  The sums s(j)+s(j+1)+...+s(k) include (4,5,9,10,13,14,18,...), with complement (1,2,3,6,7,8,11,12,15,...).
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = 3 + GoldenRatio; b = Table[Floor[k*r], {k, 0, z}]; (* A276855 *)
    t = Differences[b]; (* A276868 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w];  (* A276887 *)

A276889 Sums-complement of the Beatty sequence for sqrt(2) + sqrt(3).

Original entry on oeis.org

1, 2, 5, 8, 11, 14, 17, 20, 21, 24, 27, 30, 33, 36, 39, 42, 43, 46, 49, 52, 55, 58, 61, 64, 65, 68, 71, 74, 77, 80, 83, 86, 87, 90, 93, 96, 99, 102, 105, 108, 109, 112, 115, 118, 121, 124, 127, 130, 131, 134, 137, 140, 143, 146, 149, 150, 153, 156, 159, 162
Offset: 1

Views

Author

Clark Kimberling, Oct 01 2016

Keywords

Comments

See A276871 for a definition of sums-complement and guide to related sequences.

Examples

			The Beatty sequence for sqrt(2) + sqrt(3) is A110117 = (0,3,6,9,12,15,18,22,...), with difference sequence s = A276870 = (3,3,3,3,3,3,4,3,3,3,3,3,3,4,3,...).  The sums s(j)+s(j+1)+...+s(k) include (3,4,6,7,9,10,...), with complement (1,2,5,8,11,14,17,20,21,...).
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = Sqrt[2] + Sqrt[3]; b = Table[Floor[k*r], {k, 0, z}]; (* A110117 *)
    t = Differences[b]; (* A276870 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w];  (* A276889 *)

A276877 Sums-complement of the Beatty sequence for Pi.

Original entry on oeis.org

1, 2, 5, 8, 11, 14, 17, 20, 23, 24, 27, 30, 33, 36, 39, 42, 45, 46, 49, 52, 55, 58, 61, 64, 67, 68, 71, 74, 77, 80, 83, 86, 89, 90, 93, 96, 99, 102, 105, 108, 111, 112, 115, 118, 121, 124, 127, 130, 133, 134, 137, 140, 143, 146, 149, 152, 155, 156, 159, 162
Offset: 1

Views

Author

Clark Kimberling, Sep 27 2016

Keywords

Comments

See A276871 for a definition of sums-complement and guide to related sequences.

Examples

			The Beatty sequence for Pi is A022844 = (0,3,6,9,12,15,18,21,25,,...), with difference sequence s = A063438 = (3,3,3,3,3,3,3,4,3,3,3,...).  The sums s(j)+s(j+1)+...+s(k) include (3,4,6,7,9,10,12,13,...), with complement (1,2,5,8,11,14,...).
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = Pi; b = Table[Floor[k*r], {k, 0, z}]; (* A022844 *)
    t = Differences[b]; (* A063438 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]  (* A276877 *)

A276880 Sums-complement of the Beatty sequence for 1 + sqrt(3).

Original entry on oeis.org

1, 4, 7, 12, 15, 18, 23, 26, 29, 34, 37, 42, 45, 48, 53, 56, 59, 64, 67, 70, 75, 78, 83, 86, 89, 94, 97, 100, 105, 108, 111, 116, 119, 124, 127, 130, 135, 138, 141, 146, 149, 154, 157, 160, 165, 168, 171, 176, 179, 182, 187, 190, 195, 198, 201, 206, 209, 212
Offset: 1

Views

Author

Clark Kimberling, Sep 27 2016

Keywords

Comments

See A276871 for a definition of sums-complement and guide to related sequences.

Examples

			The Beatty sequence for 1 + sqrt(3) is A054088 = (0,2,5,8,19,13,16,...), with difference sequence s = A007538 = (2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,...).  The sums s(j)+s(j+1)+...+s(k) include (2,3,5,6,8,9,10,11,13,...), with complement (1,4,7,12,15,18,23,...).
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = 1 + Sqrt[3]; b = Table[Floor[k*r], {k, 0, z}]; (* A054088 *)
    t = Differences[b]; (* A007538 *)
    c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
    u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
    w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]  (* A276880 *)
Previous Showing 11-18 of 18 results.