cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A379125 Sum of divisors of those odd squares k for which A379113(k) > 1, i.e., k that have a proper unitary divisor d > 1 such that A048720(A065621(sigma(d)),sigma(k/d)) is equal to sigma(k).

Original entry on oeis.org

403, 4123, 4953, 18291, 46101, 73749, 133939, 400179, 291441, 542469, 618673, 1153633, 1119859, 1098867, 1077699, 1599249, 2309619, 6848721, 20421219, 20131059, 17598529, 17022999, 44205381, 59669253, 80520921, 68946969, 88131729, 83998281, 88119813, 97595019, 102760497, 137273157, 147291249, 211492119, 574669953
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2024

Keywords

Crossrefs

Programs

  • PARI
    forstep(n=1,oo,2,if(A379113(n^2)>1, k++; print1(sigma(n^2), ", ")));

Formula

a(n) = A000203(A379121(n)).
a(n) = A277320(sigma(A379123(n)), sigma(A379124(n))).
a(n) = sigma(A379123(n)) * sigma(A379124(n)).

A379221 Square array A(n, k) = A048720(A065621(sigma((2n-1)^2)), sigma((2k-1)^2)), read by falling antidiagonals, (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), etc.

Original entry on oeis.org

1, 13, 21, 31, 233, 35, 57, 403, 439, 73, 121, 845, 961, 805, 137, 133, 1549, 1899, 1831, 1765, 397, 183, 2753, 4011, 4017, 3943, 3025, 475, 403, 2331, 4399, 7665, 7537, 4123, 2159, 695, 307, 7919, 5945, 9709, 16177, 9365, 5737, 7635, 855, 381, 5839, 12501, 10447, 17965, 18389, 10707, 13261, 5299, 901, 741, 4953, 9525, 27083, 24207, 49465, 24339, 27295, 10093, 4537, 1837
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2024

Keywords

Examples

			The top left corner of the array:
   n\k   |    1      2      3      4       5       6       7       8       9
(*2-1)^2 |    1      9     25     49      81     121     169     225     289
---------+-------------------------------------------------------------------
   1   1 |    1,    13,    31,    57,    121,    133,    183,    403,    307,
   2   9 |   21,   233,   403,   845,   1549,   2753,   2331,   7919,   5839,
   3  25 |   35,   439,   961,  1899,   4011,   4399,   5945,  12501,   9525,
   4  49 |   73,   805,  1831,  4017,   7665,   9709,  10447,  27083,  17515,
   5  81 |  137,  1765,  3943,  7537,  16177,  17965,  24207,  50315,  37163,
   6 121 |  397,  3025,  4123,  9365,  18389,  49465,  60243,  86471, 108263,
   7 169 |  475,  2159,  5737, 10707,  24339,  60215,  52817,  76125, 131005,
   8 225 |  695,  7635, 13261, 27295,  51039,  87019,  76565, 245801, 183625,
   9 289 |  855,  5299, 10093, 18047,  37823, 107915, 130229, 183305, 200041,
  10 361 |  901,  4537, 12003, 22365,  46621, 118545,  98539, 162655, 248191,
  11 441 | 1837,  8945, 24187, 43317,  90741, 232729, 201779, 311335, 504583,
  12 529 | 1657, 11349, 18231, 40193,  66369, 205597, 231263, 338075, 449339,
  13 625 | 1301, 14825, 25235, 56909, 105229, 170945, 156187, 508399, 387535,
  14 729 | 3277, 22929, 36059, 81877, 134293, 416121, 464275, 684551, 888103,
  15 841 | 1451, 15967, 28601, 50979, 110051, 181895, 139777, 469709, 346669,
  16 961 | 1057, 13741, 32767, 58137, 125785, 132133, 182871, 425971, 322387,
		

Crossrefs

Cf. A379223 (row 1), A379224 (column 1).
Cf. also A065768, A379220.

Programs

  • PARI
    up_to = 66;
    A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1, n+n-1);
    A379221sq(x,y) = A048720(A065621(sigma((x+x-1)^2)), sigma((y+y-1)^2));
    A379221list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379221sq(col,(a-(col-1))))); (v); };
    v379221 = A379221list(up_to);
    A379221(n) = v379221[n];

Formula

A(n, k) = A277320(A379223(n), A379223(k)).

A379126 a(1) = 1; for n > 1, a(n) is the least number k such that A325567(k) = n, or 0 if no such number exists.

Original entry on oeis.org

1, 4, 9, 8, 35, 18, 49, 16, 135, 70, 33, 36, 65, 98, 225, 32, 527, 270, 133, 140, 651, 66, 161, 72, 775, 130, 837, 196, 899, 450, 961, 64, 2079, 1054, 525, 540, 259, 266, 273, 280, 2583, 1302, 129, 132, 2835, 322, 705, 144, 3087, 1550, 3213, 260, 3339, 1674, 385, 392, 1539, 1798, 3717, 900, 3843, 1922, 3969, 128
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Comments

By definition, sequence is injective (apart from possible 0's) and each a(n) is a multiple of n.

Crossrefs

Cf. A048720, A065621, A277320, A325567, A379128 (odd bisection), A379228 [= a(n)/n].
Cf. also A115872, A266195, A266351.

Programs

  • PARI
    A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1, n+n-1);
    memoA325567 = Map();
    A325567(n) = if(1==n,1,my(v); if(mapisdefined(memoA325567,n,&v), v, fordiv(n, d, if((d>1)&&A048720(A065621(n/d), d)==n, v = (n/d); break)); mapput(memoA325567,n,v); (v)));
    A379126(n) = for(k=1,oo,if(A325567(k)==n, return(k)));

Formula

a(n) = n * A379228(n).

A379128 a(1) = 1; for n > 1, a(n) is the least odd number k such that A325567(k) = 2*n-1, or 0 if no such number exists.

Original entry on oeis.org

1, 9, 35, 49, 135, 33, 65, 225, 527, 133, 651, 161, 775, 837, 899, 961, 2079, 525, 259, 273, 2583, 129, 2835, 705, 3087, 3213, 3339, 385, 1539, 3717, 3843, 3969, 8255, 2077, 1035, 1065, 9271, 2325, 1155, 1185, 4131, 2573, 10795, 2697, 11303, 2821, 11811, 2945, 12319, 12573, 12827, 1545, 13335, 13589, 13843, 1665
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Crossrefs

Odd bisection of A379126.

Programs

Formula

a(n) = A379126(2*n-1).

A379129 a(n) is the number of unitary proper divisors d > 1 of n for which A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 2, 2, 0, 1, 0, 1, 0, 1, 0, 5, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 1, 2, 0, 0, 2, 1, 1, 1, 0, 3, 0, 1, 1, 0, 1, 5, 0, 0, 1, 5, 0, 1, 0, 0, 1, 1, 1, 3, 0, 1, 0, 0, 0, 3, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2024

Keywords

Examples

			For n = 21 = 3*7, both A048720(A065621(sigma(3)),sigma(7)) [= A048720(4,8)] and A048720(A065621(sigma(7)),sigma(3)) [= A048720(8,4)] yield the decided result, which is 32 = sigma(21), therefore a(21) = 2.
For n = 34 = 2*17, neither A048720(A065621(sigma(2)),sigma(17)) = A048720(7,18) = 126 nor A048720(A065621(sigma(17)),sigma(2)) = A048720(50,3) = 86 is the decided result, 54 = sigma(34), therefore a(34) = 0.
See example in A379121 why a(383942431613601) = 2.
		

Crossrefs

Cf. A000203, A048720, A065621, A277320, A379113, A379114 (positions of terms > 0), A379118, A379130.

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A379129(n) = { my(s=sigma(n)); sumdiv(n,d,if(1==d || d==n || 1!=gcd(d,n/d), 0, A048720(A065621(sigma(n/d)),sigma(d))==s)); };

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, 1A048720(A065621(sigma(d)),sigma(n/d)) == sigma(n)], where [ ] is the Iverson bracket.
a(n) <= A379130(n).

A379127 a(1) = 1; for n > 1, a(n) is the largest proper divisor d of 2n-1 such that A048720(A065621(d),(2n-1)/d) is equal to 2n-1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 11, 5, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 43, 1, 19, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 23, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Comments

The position of the first occurrence of odd numbers k = 1, 3, 5, 7, 9, ... in this sequence is given by (1/2) * (A379128(2*k-1)+1).

Crossrefs

Odd bisection of A325567.

Programs

Formula

a(n) = A325567(2*n-1).

A379130 a(n) is the number of unitary divisors d of n for which A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 4, 3, 1, 2, 1, 2, 1, 2, 1, 6, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 3, 1, 1, 3, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 6, 1, 1, 2, 6, 1, 2, 1, 1, 2, 2, 2, 4, 1, 2, 1, 1, 1, 4, 1, 2, 2, 2, 1, 1, 2, 2, 4, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2024

Keywords

Comments

It seems that A046528 gives all numbers k for which a(k) = A034444(k).

Examples

			For every n, a(n) >= 1, because A048720(A065621(sigma(1)), sigma(n)) = A048720(A065621(1), sigma(n)) = A048720(1, sigma(n)) = sigma(n).
For n = 21 = 3*7, after the divisor pair [1,21], all other divisor pairs also satisfy the condition: A048720(A065621(sigma(3)),sigma(7)) [= A048720(4,8)] and A048720(A065621(sigma(7)),sigma(3)) [= A048720(8,4)] and A048720(A065621(sigma(21)),sigma(1)) [= A048720(32,1)] all yield the decided result, 32 = sigma(21), therefore a(21) = 4.
See also examples in A379129.
		

Crossrefs

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A379130(n) = { my(s=sigma(n)); sumdiv(n,d,if(1!=gcd(d,n/d), 0, A048720(A065621(sigma(n/d)),sigma(d))==s)); };

Formula

a(n) = Sum_{d|n, gcd(d,n/d)=1} [A048720(A065621(sigma(d)),sigma(n/d)) == sigma(n)], where [ ] is the Iverson bracket.
A379129(n) <= a(n) <= A034444(n).
Previous Showing 11-17 of 17 results.