cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A277333 Left inverse of A260443, giving 0 as a result when n is outside of the range of A260443.

Original entry on oeis.org

0, 1, 2, 0, 4, 3, 8, 0, 0, 0, 16, 0, 32, 0, 6, 0, 64, 5, 128, 0, 0, 0, 256, 0, 0, 0, 0, 0, 512, 7, 1024, 0, 0, 0, 12, 0, 2048, 0, 0, 0, 4096, 0, 8192, 0, 0, 0, 16384, 0, 0, 0, 0, 0, 32768, 0, 0, 0, 0, 0, 65536, 0, 131072, 0, 0, 0, 0, 0, 262144, 0, 0, 0, 524288, 0, 1048576, 0, 10, 0, 24, 0, 2097152, 0, 0, 0, 4194304, 0, 0, 0, 0, 0, 8388608, 9
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Examples

			a(1) = 0 because A260443(0) = 1. For n > 1, a(n) = 0 only if n does not occur in the range of A260443.
a(6) = 3 because A260443(3) = 6.
		

Crossrefs

Cf. A277316, A260442 (from 2 onward, the positions of nonzeros), A277317 (positions of primes).

Programs

Formula

If A260443(A048675(n)) = n, then a(n) = A048675(n), otherwise a(n) = 0.
Other identities. For all n >= 0:
a(A260443(n)) = n.
a(2n+1) = 2*a(A064989(2n+1)).
If a(2n) > 0 [by necessity an odd number in that case], then A005811((a(2n)-1)/2) = A007949(2n). [See comment in A277324.]

A284576 a(n) = A059896(A260443(n), A260443(1+n)).

Original entry on oeis.org

2, 6, 6, 30, 90, 270, 30, 210, 630, 6750, 6750, 1890, 15750, 47250, 210, 2310, 6930, 47250, 47250, 330750, 992250, 425250, 47250, 103950, 173250, 2315250, 2315250, 519750, 8489250, 25467750, 2310, 30030, 90090, 519750, 25467750, 3638250, 1910081250, 13023281250, 1447031250, 1400726250, 4202178750, 104186250, 2604656250
Offset: 0

Views

Author

Antti Karttunen, Apr 11 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A059896(A260443(n), A260443(1+n)).
a(n) = A284577(n) * A284578(n).
a(n) = A277324(n) / A284578(n).

A284577 a(n) = A059897(A260443(n), A260443(1+n)).

Original entry on oeis.org

2, 6, 2, 30, 90, 270, 2, 210, 630, 6750, 2250, 378, 15750, 47250, 2, 2310, 6930, 6750, 630, 66150, 198450, 3402, 90, 14850, 24750, 92610, 30870, 14850, 8489250, 25467750, 2, 30030, 90090, 6750, 339570, 14850, 382016250, 372093750, 9843750, 1400726250, 4202178750, 3402, 198450, 20465156250, 7796250, 83531250, 90, 859950, 1433250, 1890
Offset: 0

Views

Author

Antti Karttunen, Apr 11 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A059897(A260443(n), A260443(1+n)).
a(n) = A277324(n) / A000290(A284578(n)).
A001222(a(n)) = A285107(n).

A284578 a(n) = A059895(A260443(n), A260443(1+n)).

Original entry on oeis.org

1, 1, 3, 1, 1, 1, 15, 1, 1, 1, 3, 5, 1, 1, 105, 1, 1, 7, 75, 5, 5, 125, 525, 7, 7, 25, 75, 35, 1, 1, 1155, 1, 1, 77, 75, 245, 5, 35, 147, 1, 1, 30625, 13125, 7, 245, 245, 40425, 11, 11, 13475, 1029, 245, 245, 1715, 1617, 11, 77, 1225, 3675, 385, 1, 1, 15015, 1, 1, 1001, 75, 245, 2695, 1715, 3, 1, 7, 48125, 7203, 1, 35, 300125, 363, 1, 1, 75625
Offset: 0

Views

Author

Antti Karttunen, Apr 11 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A059895(A260443(n), A260443(1+n)).
a(n) = A277324(n) / A284576(n) = A000196(A277324(n)/A284577(n)).
a(n) = A284576(n) / A284577(n).
A001222(a(n)) = A285108(n).

A277189 Odd bisection of A277020: a(n) = A277020(2n+1).

Original entry on oeis.org

1, 5, 13, 21, 45, 93, 109, 85, 173, 477, 957, 733, 749, 1501, 877, 341, 685, 3549, 12221, 7133, 14269, 49021, 28605, 5853, 5869, 30685, 61373, 23517, 12013, 24029, 7021, 1365, 2733, 28125, 192445, 97245, 384957, 2031485, 1032125, 113629, 227261, 4128637, 16252669, 3112829, 1564605, 6225789, 913341, 46813, 46829, 915421
Offset: 0

Views

Author

Antti Karttunen, Oct 08 2016

Keywords

Crossrefs

Terms form a proper subset of A247648.

Programs

Formula

a(n) = A277020(2*n + 1).
a(n) = A156552(A277324(n)).
Other identities. For all n >= 0:
a(n) = 1 mod 4.

Extensions

Offset changed from 1 to 0 by Antti Karttunen, Oct 11 2016

A277200 Even terms in A260442 (in A260443).

Original entry on oeis.org

2, 6, 18, 30, 90, 210, 270, 450, 630, 2310, 6750, 6930, 9450, 15750, 20250, 22050, 30030, 47250, 90090, 330750, 510510, 727650, 1212750, 1531530, 1653750, 2668050, 3543750, 4961250, 8489250, 9699690, 18191250, 24806250, 25467750, 29099070, 40020750, 53156250, 57881250, 104053950, 173423250, 173643750
Offset: 1

Views

Author

Antti Karttunen, Oct 14 2016

Keywords

Comments

All odd terms larger > 1 in A260442 can be obtained from these terms by shifting their prime factorization some number of steps towards larger primes with A003961.

Crossrefs

Sequence A277324 sorted into ascending order.
Subsequence of A055932.
Cf. A002110, A277317 (subsequences, apart from their initial terms).
Also all terms of A277318 apart from initial 3 are included in this sequence.

Programs

A277323 Even bisection of A260443 (the odd terms): a(n) = A260443(2*n).

Original entry on oeis.org

1, 3, 5, 15, 7, 75, 35, 105, 11, 525, 245, 2625, 77, 3675, 385, 1155, 13, 5775, 2695, 128625, 847, 643125, 18865, 202125, 143, 282975, 29645, 1414875, 1001, 444675, 5005, 15015, 17, 75075, 35035, 15563625, 11011, 346644375, 2282665, 108945375, 1859, 544726875, 15978655, 12132553125, 121121, 3813088125, 2697695
Offset: 0

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a[2 n], {n, 0, 46}] (* Michael De Vlieger, Apr 05 2017 *)

Formula

a(n) = A260443(2*n).
a(0) = 1; for n >= 1, a(n) = A003961(A260443(n)).
Other identities. For all n >= 0:
A007949(a(n)) = A000035(n).
A112765(a(n)) is the interleaving of A000035 and A005811, probably A101979.

A283975 Odd bisection of A264977.

Original entry on oeis.org

1, 3, 1, 7, 5, 7, 1, 15, 13, 7, 5, 11, 13, 15, 1, 31, 29, 7, 13, 3, 1, 11, 5, 19, 21, 15, 13, 19, 29, 31, 1, 63, 61, 7, 29, 19, 25, 3, 13, 11, 9, 11, 1, 23, 25, 19, 5, 35, 37, 15, 21, 11, 9, 19, 13, 43, 37, 31, 29, 35, 61, 63, 1, 127, 125, 7, 61, 51, 41, 19, 29, 59, 49, 3, 25, 31, 17, 11, 13, 27, 25, 11, 9, 31, 21, 23, 1, 47, 33, 19, 25, 63, 41, 35, 5, 67, 69
Offset: 0

Views

Author

Antti Karttunen, Mar 25 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A264977((2*n)+1).
a(n) = A248663(A277324(n)).
A000120(a(n)) = A284266(n).

A284008 a(n) = lcm(A260443(n), A260443(1+n)).

Original entry on oeis.org

2, 6, 6, 30, 90, 90, 30, 210, 630, 450, 1350, 1890, 3150, 3150, 210, 2310, 6930, 3150, 47250, 330750, 992250, 141750, 47250, 103950, 173250, 110250, 330750, 519750, 242550, 242550, 2310, 30030, 90090, 34650, 3638250, 3638250, 272868750, 173643750, 11576250, 200103750, 600311250, 34728750, 2604656250, 28651218750, 1910081250, 272868750, 3638250, 9459450, 15765750
Offset: 0

Views

Author

Antti Karttunen, Mar 22 2017

Keywords

Crossrefs

Programs

Formula

a(n) = lcm(A260443(n), A260443(1+n)).
a(n) = A277324(n) / A277198(n).
Other identities. For all n >= 0:
A001222(a(n)) = A284009(n).
Previous Showing 11-19 of 19 results.