cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 92 results. Next

A302593 Numbers whose prime indices are powers of a common prime number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 64, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
25: {{2},{2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
31: {{5}}
32: {{},{},{},{},{}}
34: {{},{4}}
36: {{},{},{1},{1}}
38: {{},{1,1,1}}
40: {{},{},{},{2}}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,q;
      uses numtheory;
      F:= map(pi, factorset(n));
      nops(`union`(op(map(factorset,F)))) <= 1
    end proc:
    select(filter, [$1..200]); # Robert Israel, Oct 22 2020
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Join@@primeMS/@primeMS[#]&]

A277130 Number of planar branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 6, 2, 3, 1, 14, 1, 3, 3, 24, 1, 14, 1, 14, 3, 3, 1, 78, 2, 3, 6, 14, 1, 25, 1, 112, 3, 3, 3, 110, 1, 3, 3, 78, 1, 25, 1, 14, 14, 3, 1, 464, 2, 14, 3, 14, 1, 78, 3, 78, 3, 3, 1, 206, 1, 3, 14, 568, 3, 25, 1, 14, 3, 25, 1, 850, 1, 3, 14, 14
Offset: 1

Views

Author

Michel Marcus, Oct 01 2016

Keywords

Comments

A planar branching factorization of n is either the number n itself or a sequence of at least two planar branching factorizations, one of each factor in an ordered factorization of n. - Gus Wiseman, Sep 11 2018

Examples

			From _Gus Wiseman_, Sep 11 2018: (Start)
The a(12) = 14 planar branching factorizations:
  12,
  (2*6), (3*4), (4*3), (6*2), (2*2*3), (2*3*2), (3*2*2),
  (2*(2*3)), (2*(3*2)), (3*(2*2)), ((2*2)*3), ((2*3)*2), ((3*2)*2).
(End)
		

Crossrefs

Programs

  • C
    #include 
    #include 
    #include 
    #define MAX 10000
    /* Number of planar branching factorizations of n. */
    #define lu unsigned long
    lu nbr[MAX]; /* number of branching */
    lu a, b, d, e; /* temporary variables */
    lu n; lu m, p; // factors of n
    lu x; // square root of n
    void main(unsigned argc, char *argv[])
    {
      memset(nbr, 0, MAX*sizeof(lu));
      for (b=0, n=1; nDaniel Mondot, May 19 2017 */
  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    otfs[n_]:=Prepend[Join@@Table[Tuples[otfs/@f],{f,Select[ordfacs[n],Length[#]>1&]}],n];
    Table[Length[otfs[n]],{n,20}] (* Gus Wiseman, Sep 11 2018 *)

Formula

a(prime^n) = A118376(n). a(product of n distinct primes) = A319122(n). - Gus Wiseman, Sep 11 2018

Extensions

Terms a(65) and beyond from Daniel Mondot, May 19 2017

A295281 Number of complete strict tree-factorizations of n > 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 4, 1, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 0, 1, 4, 1, 1, 1, 4, 1, 6, 1, 1, 1, 1, 1, 4, 1, 1, 0, 1, 1, 9, 1, 1, 1, 1, 1, 9, 1
Offset: 2

Views

Author

Gus Wiseman, Nov 19 2017

Keywords

Comments

A strict tree-factorization (see A295279 for definition) is complete if its leaves are all prime numbers.
From Andrew Howroyd, Nov 18 2018: (Start)
a(n) depends only on the prime signature of n.
This sequence is very similar but not identical to the number of complete orderless identity tree-factorizations of n. The first difference is at n=900 (square of three primes). Here a(n) = 191 whereas the other sequence would have 197. (End)

Examples

			The a(72) = 6 complete strict tree-factorizations are: 2*3*(2*(2*3)), 2*(2*3*(2*3)), 2*(2*(3*(2*3))), 2*(3*(2*(2*3))), 3*(2*(2*(2*3))), (2*3)*(2*(2*3)).
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sftc[n_]:=Prepend[Join@@Function[fac,Tuples[sftc/@fac]]/@Select[postfacs[n],And[Length[#]>1,UnsameQ@@#]&],n];
    Table[Length[Select[sftc[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,2,100}]
  • PARI
    seq(n)={my(v=vector(n), w=vector(n)); v[1]=1; for(k=2, n, w[k]=v[k]+isprime(k); forstep(j=n\k*k, k, -k, v[j]+=w[k]*v[j/k])); w[2..n]} \\ Andrew Howroyd, Nov 18 2018

Formula

a(product of n distinct primes) = A000311(n).
Positions of zeros are proper prime powers A025475. Positions of nonzero entries are A085971.

A295923 Number of twice-factorizations of n where the first factorization is constant, i.e., type (P,R,P).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 10, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 4, 4, 1, 5, 1, 8, 2, 2, 2, 13, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 29, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 10, 2, 1, 11
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) factorizations of d.

Examples

			The a(16) = 10 twice-factorizations are (2*2*2*2), (2*2*4), (2*8), (4*4), (16), (2*2)*(2*2), (2*2)*(4), (4)*(2*2), (4)*(4), (2)*(2)*(2)*(2).
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    a[n_]:=Sum[Length[postfacs[n^(1/g)]]^g,{g,Divisors[GCD@@FactorInteger[n][[All,2]]]}];
    Array[a,50]

A296121 Number of twice-factorizations of n with no repeated factorizations.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 10, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 20, 3, 3, 3, 25, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 47, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 40, 3, 12, 1, 8, 3, 12, 1, 68, 1, 3, 8, 8, 3, 12, 1, 47, 10
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

From Robert G. Wilson v, Dec 05 2017: (Start)
a(n) = 1 iff n equals 1 or is a prime;
a(n) = 2 iff n is a prime squared;
a(n) = 3 iff n is a squarefree semiprime;
a(n) = 5 iff n is a prime cube;
a(n) = 8 iff n is of the form p^2*q, etc.
(End)

Examples

			The a(12) = 8 twice-factorizations:
(2)*(2*3), (3)*(2*2), (2*2*3),
(2)*(6), (2*6),
(3)*(4), (3*4),
(12).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Join@@Table[Select[Tuples[facs/@p],UnsameQ@@#&],{p,facs[n]}]],{n,100}]

A301829 Number of ways to choose a nonempty submultiset of a factorization of n into factors greater than one.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 3, 4, 1, 12, 1, 4, 4, 15, 1, 12, 1, 12, 4, 4, 1, 29, 3, 4, 7, 12, 1, 17, 1, 29, 4, 4, 4, 37, 1, 4, 4, 29, 1, 17, 1, 12, 12, 4, 1, 64, 3, 12, 4, 12, 1, 29, 4, 29, 4, 4, 1, 53, 1, 4, 12, 54, 4, 17, 1, 12, 4, 17, 1, 92, 1, 4, 12, 12, 4, 17
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Examples

			The a(12) = 12 submultisets ("<" means subset or equal):
(2)<(2*2*3), (3)<(2*2*3), (2*2)<(2*2*3), (2*3)<(2*2*3), (2*2*3)<(2*2*3),
(2)<(2*6), (6)<(2*6), (2*6)<(2*6),
(3)<(3*4), (4)<(3*4), (3*4)<(3*4),
(12)<(12).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[facs[d]]*Length[facs[n/d]],{d,Rest[Divisors[n]]}],{n,100}]

Formula

a(n) = Sum_{d|n, d>1} f(d) * f(n/d) where f(n) = A001055(n) is the number of factorizations of n into factors greater than 1.

A302521 Odd numbers whose prime indices are squarefree and have disjoint prime indices. Numbers n such that the n-th multiset multisystem is a set partition.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 41, 43, 47, 51, 55, 59, 67, 73, 79, 83, 85, 93, 101, 109, 113, 123, 127, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 215, 219, 221, 233, 241, 249, 255, 257, 269, 271
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set partitions.
01: {}
03: {{1}}
05: {{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
59: {{7}}
67: {{8}}
73: {{2,4}}
79: {{1,5}}
83: {{9}}
85: {{2},{4}}
93: {{1},{5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,100,2],UnsameQ@@Join@@primeMS/@primeMS[#]&]

A316220 Number of triangles whose weight is the n-th Fermi-Dirac prime in the multiorder of integer partitions of Fermi-Dirac primes into Fermi-Dirac primes.

Original entry on oeis.org

1, 1, 3, 3, 9, 21, 46, 95, 273, 363, 731, 3088, 6247, 24152, 46012, 319511, 1141923, 2138064, 7346404, 13530107, 45297804, 271446312
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0. An FD-partition is an integer partition of a Fermi-Dirac prime into Fermi-Dirac primes. a(n) is the number of sequences of FD-partitions whose sums are weakly decreasing and sum to the n-th Fermi-Dirac prime.

Crossrefs

Programs

  • Mathematica
    nn=60;
    FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]];
    FDpl=Select[Range[nn],FDpQ];
    fen[n_]:=fen[n]=SeriesCoefficient[Product[1/(1-x^p),{p,Select[Range[n],FDpQ]}],{x,0,n}];
    Table[Sum[Times@@fen/@p,{p,Select[IntegerPartitions[FDpl[[n]]],And@@FDpQ/@#&]}],{n,Length[FDpl]}]

A321514 Number of ways to choose a factorization of each integer from 2 to n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 12, 24, 48, 48, 192, 192, 384, 768, 3840, 3840, 15360, 15360, 61440, 122880, 245760, 245760, 1720320, 3440640, 6881280, 20643840, 82575360, 82575360, 412876800, 412876800, 2890137600, 5780275200, 11560550400, 23121100800, 208089907200
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Examples

			The a(8) = 12 ways to choose a factorization of each integer from 2 to 8:
  (2)*(3)*(4)*(5)*(6)*(7)*(8)
  (2)*(3)*(4)*(5)*(6)*(7)*(2*4)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(8)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(8)
  (2)*(3)*(4)*(5)*(6)*(7)*(2*2*2)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(8)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(2*2*2)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*2*2)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Array[Length[facs[#]]&,n,1,Times],{n,30}]

Formula

a(n) = Product_{k = 1..n} A001055(k).

A296132 Number of twice-factorizations of n where the first factorization is constant and the latter factorizations are strict, i.e., type (P,R,Q).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 9, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 10, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) strict factorizations of d.

Examples

			The a(36) = 9 twice-factorizations are (2*3)*(2*3), (2*3)*(6), (6)*(2*3), (6)*(6), (2*3*6), (2*18), (3*12), (4*9), (36).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[sfs[n^(1/g)]]^g,{g,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]
Previous Showing 41-50 of 92 results. Next